
Chapter 1

Introduction

In classical optimization and mathematical programming, the usual assumption is

that of a single objective or criterion, with respect to which the available alternatives

are evaluated, in order to achieve an optimal solution. In practice, however, decision

makers are often confronted with several, usually conflicting criteria, that they want

to optimize simultaneously. Think, for example, of the classical shortest path prob-

lem. In the application of a route guidance system, a driver probably not only cares

about reaching her target as quickly as possible, but might also be concerned about

fuel consumption and road charges, minimizing her monetary expenses. Often high-

ways are the fastest connections, but subject to tolls. Municipal roads, on the other

hand, are usually free of charge, while causing a longer travel time. Consequently,

in most cases there will not exist a route which is both quickest and cheapest—the

objectives are in conflict.

1.1 A Motivation of reference point methods and their ap-

proximation

Multicriteria optimization and Pareto optimality. This setting of several

conflicting criteria, that are to be optimized simultaneously, is the subject of the area

of multicriteria optimization (also called multiobjective optimization or multiobjective

programming). Due to the non-existence of a clear preference relation, alternative

solution concepts have been developed. The central notion in this context is that

of Pareto optimality. It goes back to the economist and sociologist Vilfredo Pareto

(1848–1923). In his Manuale di Economia Politica [Par06] from 1906, he writes1:

We will begin by defining a term which is desirable to use in order

to avoid prolixity. We will say that the members of a collectivity enjoy

1English translation from 1971 [Par71], as cited by Ehrgott in [Ehr12]
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maximum ophelimity in a certain position when it is impossible to find a

way of moving from that position very slightly in such a manner that the

ophelimity enjoyed by each of the individuals of that collectivity increases

or decreases. That is to say, any small displacement in departing from

that position necessarily has the effect of increasing the ophelimity which

certain individuals enjoy, and decreasing that which others enjoy, of being

agreeable to some and disagreeable to others.

Pareto refers here to the satisfaction (ophelimity) of individuals in a society, rather

than to objectives in an optimization problem, but the principle is the same: We say

that a solution is Pareto optimal (i.e., enjoys maximum ophelimity), if it cannot be

improved in one criterion without deteriorating another. A formal definition of this

notion is given in Section 1.3.

Informally speaking, a Pareto optimal solution is a solution that is not obviously

sub-optimal: There is no other solution that is at least as good in all criteria, and

strictly better in at least one criterion. If such a solution existed, it would dominate

the former solution, and would clearly be preferred. This is why Pareto optimal

solutions are often referred to as non-dominated solutions. Another term that is

used frequently is that of efficient solutions.

The observation that Pareto optimal solutions are exactly the non-dominated

solutions leads us directly to the major disadvantage of this concept: The domi-

nance relation is not total, i.e. there might be two distinct elements that are not

comparable—neither dominates the other. In general, there can be a lot of Pareto

optimal solutions. Their number can even be exponential (in the size of the instance)

for discrete problems (cf. [EP92, Han80]), and infinite in continuous optimization.

Since usually it is infeasible to consider (or even to compute or output) all these

solutions, a refinement of the concept of Pareto optimality was indispensable.

Weighted sum. For several decades now, researchers have come up with various

ways of generating a (total) preference relation on the set of Pareto optimal solutions.

Very often this is achieved by the means of scalarization, i.e. the aggregation of several

objectives (or one vectorial value) into one scalar value. The search for a solution is

thus reduced again to the optimization of a (one-dimensional) scalarizing function.

The most straightforward scalarizing function—at least to mathematicians2—

is the weighted sum approach. Assuming that all objectives are quantifiable and

of the same sense of optimization (e.g., all minimization), an objective vector is

scalarized by multiplying each entry with a criterion-specific weight and summing

the products. This weighted sum of the individual criteria is what we then aim to

minimize (respectively maximize), inducing a total preference relation on the set of

Pareto optimal solutions.

2As we will discuss further below, to the “average” human being this concept is not as natural.
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An optimal solution with respect to the weighted sum (with positive weights)

is guaranteed to be Pareto optimal. However, in general not all Pareto optimal

solutions can be generated this way. There might be Pareto optimal solutions that,

no matter how we choose the weights, are never optimal with respect to the weighted

sum scalarization. Consider the example from the beginning, the bicriteria shortest

path problem. We want to choose a route, minimizing both travel time and monetary

expenses. There are three feasible routes, with objective vectors (1, 10), (6, 6), and

(10, 1). No matter which weights we choose, we will always either get the first or

the last solution as a scalarization optimum, and never the second one, although this

solution is very balanced, and its scalarization value is only slightly worse than the

other solutions’ values, for identical weights for time and cost.

Another drawback of the weighted sum approach is that human beings tend to

have difficulties to handle weights and fully understand their effects. Wierzbicki, for

example, stated in 1986 that

experience in applications of decision support systems shows that weight-

ing coefficients are not easy to be understood well and interpreted by an

average user. [Wie86]

This is the reason why alternative ways to model the decision maker’s preferences

have been developed. One of the most popular among them are reference points.

Reference point methods and compromise programming. Both disadvan-

tages of the weighted sum approach—the disability to generate all Pareto optimal

solutions, and the bad interpretability of the parameters—are tackled simultaneously

by the concept of reference point solutions.

In this concept, the decision maker’s preferences are not modeled by weighting

the criteria, but through reference or aspiration levels. In each criterion, an aspired

objective value is specified. These values form the coordinates of the so-called ref-

erence point in the objective space. In the simplest model, one solution is preferred

over another if it is closer to this reference point.

A reference point of particular interest is the so-called ideal point, which is ob-

tained by optimizing each criterion individually. The reference level in a certain

criterion is thus its optimal value, when all other criteria are disregarded. The prob-

lem of finding a reference point solution with respect to the ideal point is usually

referred to as compromise programming, and the corresponding solutions are called

compromise solutions.

In some cases, a specification of a weight for each objective might actually

be infeasible, while reference points have a clear interpretation. An example are

infinite-dimensional objective spaces, e.g. if the object of optimization is a function.

Wierzbicki [Wie80b], for example, discusses trajectories of inflation rates and the

gross national product over time. Clearly we cannot specify infinitely many weights.
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Still, a decision maker might be able to give a target trajectory that she would like

to approach as closely as possible.

Already in the 1950s, Herbert A. Simon (1916–2001), who received the Nobel

Prize in Economics in 1978 “for his pioneering research into the decision-making pro-

cess within economic organizations”3, considered a model of decision making based

on reference levels. According to his Behavioral model of rational choice [Sim55],

humans strive to satisfy goals, rather than optimize a utility function. This strategy

is termed satisficing4 behavior (see the introduction to Part IV in Simon’s Models of

Man [Sim57], and his book Organizations, together with James G. March [MS58]).

It is not restricted to human individuals, but extends to economic organizations. As

Simon noted, “there is some empirical evidence that business goals are, in fact, stated

in satisficing terms” [Sim57].

The satisficing theory, however, does not differentiate between any two solutions

that both attain all aspiration levels, even if one dominates the other. Therefore in

the 1980s, Wierzbicki extended it to quasi-satisficing decision making:

A decision maker [. . . ] is quasi-satisficing if he optimizes when his reserva-

tion or aspiration levels are not yet attained, but he can further optimize

or forego the optimization for additional good reasons if his aspiration

levels are attained. [Wie86]

According to the quasi-satisficing theory, a decision maker thus first strives to achieve

all his reference values, but might also optimize beyond them, in case the reference

point is achievable. This allows scalarizing functions that are based on reference

points and have optima that are guaranteed to be Pareto optimal.

As we shall see below, scalarizations based on reference points can also have

every Pareto optimal solution as an optimum. If the measurement of the distance to

the reference point, as well as the optimization beyond the reference point, is done

appropriately, the set of reference point solutions under varying parameters is thus

exactly the set of Pareto optimal solutions.

This, together with the improved interpretability of the parameters, shows that

reference point methods are a more powerful concept than the weighted sum tech-

nique. The conceptual advantage, however, comes at the cost of a higher complexity.

Whereas optimization of the weighted sum scalarization for linear objectives boils

down to the optimization of the classical single-criterion version of the problem,

computing an optimal reference point solution is NP-hard already for simple combi-

natorial optimization problems such as the shortest path problem or the minimum

spanning tree problem.5

3see http://www.nobelprize.org/nobel prizes/economics/laureates/1978/. Retrieved on May
2, 2013.

4a portmanteau of satisfy and suffice
5See the part on robust optimization in Section 1.5, as well as Section 3.6, for further remarks

on the hardness.
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Approximation. After more than four decades of research on NP-hardness, it is

widely believed, although without proof, that the complexity classes P and NP are

not equal. If this is the case, then NP-hard problems cannot be solved efficiently,

i.e. in a running time that is polynomial in the encoding length of the input. One

can, of course, still solve these problems exactly, investing a lot of time. An alter-

native approach is to maintain the polynomial running time, and instead give up on

optimality, still striving to get as close as possible to an optimal solution. This leads

to the notion of approximation algorithms, which compute solutions whose objective

values are provably within a certain factor of the optimum.

In the light of the complexity of finding optimal reference point solutions, in this

work we analyze their approximability. In particular, we relate the approximability

of reference point solutions to another concept in multicriteria optimization, approx-

imate Pareto sets. These sets are an alternative way to deal with the huge number

of Pareto optimal solutions. Instead of computing all of them, we content ourselves

with a smaller set which contains, for every Pareto optimal solution, a solution that

approximates the former, i.e. whose objective values are all within a certain factor

of those of the Pareto optimal solution (see Section 1.3 for a formal definition).

In 2000, Papadimitriou and Yannakakis [PY00] showed that, under mild condi-

tions, such an approximate set of reasonable (i.e. polynomial) size exists, and they

gave a sufficient and necessary condition on the tractability of computing such a

set. We use their results in order to show that approximability of the Pareto set is

essentially equivalent to the approximability of reference point solutions.

1.2 Our contribution: The power of compromise

In this thesis, we discuss theory and application of reference point methods, including

compromise programming. We mainly restrict to minimization problems and utopian

reference points, i.e. reference points that are not achievable in any criterion.6

The concept of reference point solutions is widely spread in practice. There

are numerous publications about their application, and they form an integral part of

many state-of-the-art software tools in multicriteria decision making (MCDM). Their

theory, on the other hand, is not so well studied. In particular, there are only few

publications on the relation between reference point methods and the approximation

of the Pareto set, although the latter is arguably the most prominent concept for

multicriteria optimization in theoretical computer science.

Our main theoretical result (Theorem 2.1) shows the power of reference point

methods—the power of compromise: Being able to approximate reference point so-

lutions or compromise solutions is as good as being able to approximate the whole

Pareto set. The problems are equivalent in terms of approximability, i.e., the exis-

tence of a polynomial time algorithm with a provable approximation guarantee. This

6An extension to arbitrary reference points is discussed in Chapter 5.
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is true for both constant factor approximation and approximation schemes. Our re-

sult thus establishes a strong link between the two lines of research mentioned above:

The work on approximate Pareto sets in the domain of theoretical computer science,

and the applications of reference point methods in practical MCDM.

An immediate consequence of our result is the existence of approximation algo-

rithms for reference point solutions in cases where the Pareto set can be approx-

imated, e.g. the shortest path problem and the minimum spanning tree problem.

On the other hand, we also show approximation results for reference point solutions

directly, implying approximability of the Pareto set.

A notable example of such an approximation result is our extension of LP round-

ing, a technique used to design approximation algorithms for single-criterion opti-

mization problems. We show that this algorithmic paradigm, under fairly general

conditions, can be extended to reference point solutions. This implies in particular

the approximability of the Pareto sets for the multicriteria version of several classical

optimization problems, e.g. Set Cover and certain scheduling problems.

We also prove that minimizing a weighted sum of the objectives gives a constant

factor approximation of the reference point solution. This has an interesting and

surprising consequence: Whenever the weighted sum can be approximated within a

constant factor, there also is a constant factor approximation algorithm for the Pareto

set. This is in particular the case if all objectives are linear and the single-criterion

problem has an approximation algorithm.

For maximization objectives, the picture looks more diverse: If the reference

point can be chosen freely, the equivalence of approximability continues to hold. For

compromise programming, i.e., when the reference point is restricted to the ideal

point, an approximate Pareto set still gives approximate compromise solutions, but

not vice versa.

All the results above hold in this generality only for utopian (i.e., unachiev-

able) reference points. In Chapter 5, we present an extension to arbitrary, possibly

achievable reference points. Obviously, the implication from the approximability of

reference point solutions to the approximability of the Pareto set carries over, as we

can simply choose the same utopian reference point as before. In the reverse direc-

tion, the resulting approximation factors depend on the norm. As a consequence,

a constant factor approximation of the Pareto set always gives a constant factor

approximation of the reference point solution, but for approximation schemes the

implication only holds for a certain family of norms, the so-called cornered norms or

augmented Chebychev norms.

All results in this first part are based on joint work with Christina Büsing (RWTH

Aachen), Jannik Matuschke and Sebastian Stiller (both TU Berlin). Most results

are also contained in a prospective journal paper, a preliminary version of which has

been published online [GBMS13].
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examples from the practice of reference point methods.

The first example is an application of a reference point method to the area of

sustainability. As sustainability deals with compromising between economic, envi-

ronmental and social objectives, it can be seen as inherently multicriteria. Methods

from multicriteria decision analysis are thus an appropriate tool to tackle these kind

of problems.

In the presented project, the task was to evaluate the municipalities of Andalu-

sia, Spain, in terms of sustainability. To this end, a row of economic, environmental,

social and financial indicators were aggregated into a pair of synthetic sustainabil-

ity indicators, using a double reference point method (with both aspiration and

reservation levels). We present the methodology, discuss some particularities of the

application, and analyze strengths and weaknesses of the applied method.

The second example is concerned with a computational issue. In practice, multi-

criteria optimization problems are often solved by heuristics, mainly using evolution-

ary algorithms. These algorithms generate a heuristic approximation of the Pareto

set, or of a certain area of interest of this set. However, they usually do not have a

provable approximation guarantee. It is therefore even more important to compare

different algorithms empirically, which is not an easy task, due to the high dimension

of the objective space.

We compare three genetic algorithms for multicriteria optimization problems,

all of them based on reference points. Our comparative study makes use of per-

formance indicators for multicriteria heuristics, two of which are closely related to

approximation factors. The study gives valuable insights about the performance of

the algorithms, that could not be revealed by previous studies based on plots of the

objective vector set. We therefore believe that our study can help to improve the

algorithms.

Both applications are based on joint work with Francisco Ruiz, Mariano Luque

and Rubén Saborido (all Universidad de Málaga).

1.3 Preliminaries

Throughout this thesis, unless explicitly stated otherwise, we let P denote a mul-

ticriteria discrete optimization problem with k objectives. We usually assume k

to be a fixed number. With some exceptions in Chapters 3, 5 and 6, we consider

only minimization objectives. As we want to study approximation, we also restrict

to non-negative objective values. In the context of discrete optimization, we can

assume without loss of generality that all given numbers are integers.

An instance I of P is thus given by the set of feasible solutions X ⊆ n, and the

vector of objective functions c : X → k
≥0, that are to be minimized simultaneously.

We write I = (X , c). The encoding length of the instance is denoted by |I|. Since

the set X is usually given implicitly, in general |I| is much less than |X |. The cost
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vector set of the instance I = (X , c) is defined by Y := c(X ) ⊆ k
≥0. Most of the

time we will only be interested in the cost vectors, and not in the actual solutions.

We thus usually omit the feasibilty set X and only deal with the set Y.

We use the notation [k] to denote the set {1, 2, . . . , k}. For y, y′ ∈ k, we write

y ≤ y′ if and only if the inequality holds component-wise, i.e. yi ≤ y′
i for all i ∈ [k].

With this, the notion of Pareto optimality can be defined as follows:

Definition 1.1 (Domination, Pareto optimality, Pareto set). Let P be a multicri-

teria minimization problem with cost vector set Y. For y, y′ ∈ Y, we say that y′

dominates y, if y′ ≤ y and y′
i < yi for some i ∈ [k]. A solution y ∈ Y is called Pareto

optimal if there does not exist y′ ∈ Y that dominates y. The Pareto set YP is the

set of all Pareto optimal solutions.

Similar to Papadimitriou and Yannakakis [PY00], we will assume throughout this

work that for any instance I, we can compute an exponential bound on the objective

values of all solutions, i.e., a number M > 0 such that Y ⊆ [0,M ]k and such that

there is a polynomial π with M ≤ 2π(|I|). This is not a major restriction in usual

discrete optimization problems. For example, if we can compute a vector u of upper

bounds on all feasible solutions (i.e. x ≤ u for all x ∈ X ) and the cost functions are

linear with non-negative coefficients cij , then M = maxi∈[k]

{∑
j∈[n] cijuj

}
is such

an exponential upper bound.

Reference point methods. The decision maker’s preferences are modeled by

reference points, i.e. aspiration levels in all criteria. A special reference point of

particular interest is the ideal point, which is defined as the point in the objective

space obtained by optimizing each objective individually. In Chapters 2–4, we will

restrict to the ideal point and those reference points that are beyond it (and thus

unachievable), called utopian reference points.

Definition 1.2 ((Utopian) reference point, ideal point). Let Y ⊆ k
≥0 be the ob-

jective vector set of a multicriteria minimization problem. A reference point is a

point yrp ∈ k
≥0 in the objective space. The ideal point yid ∈ k

≥0 is defined by

yid
i = miny∈Y yi for i ∈ [k]. A reference point yrp is called utopian if yrp ≤ yid.

In addition to the reference point, we will also allow as input a vector λ ∈ k
≥0

of weights, to adjust a fixed norm ‖·‖ on k by letting ‖·‖λ be the norm defined by

‖y‖λ = ‖(λ1y1, . . . , λkyk)‖.
Given a utopian reference point, the goal is to find a solution that is closest to

this point w.r.t. ‖·‖λ. Conceive of this distance as the price to pay in order to attain

a compromise among the criteria. The objective value of a reference point solution

is the value of the reference point, ‖yrp‖λ, degraded by the price of compromise. For

minimization, the reference point objective function thus reads:

zyrp,λ(y) = ‖yrp‖λ + ‖y − yrp‖λ . (1.1)
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If at least some of the reference levels are achievable, this definition of course no

longer makes sense, as in that case we do not want to minimize the distance to the

reference point, but optimize beyond it. We will discuss in Chapter 5 how to extend

the objective function to this case.

If we choose the ideal point as a reference point, this problem is referred to as

compromise programming. Formally, the problems we consider in this thesis are thus

defined as follows:

Definition 1.3 (Reference point solutions, compromise programming). Let P be a

multicriteria minimization problem, and ‖·‖ a norm on k.

The problem of reference point solutions, RP(P, ‖·‖) for short, is defined as fol-

lows: Given an instance I = (X , c) of P, a utopian reference point yrp ∈ k
≥0, and a

weight vector λ ∈ k
≥0 as input, find a solution x ∈ X that minimizes zyrp,λ(c(x)),

where z is defined as in (1.1).

The problem of compromise programming, CP(P, ‖·‖) for short, is defined as

follows: Given an instance I = (X , c) of P and λ ∈ k
≥0, find a solution x ∈ X that

minimizes zyid,λ(c(x)).

Approximation. In theoretical computer science, one way to tackle NP-hard

problems is the design of algorithms that compute, in polynomial time, solutions

that are guaranteed to be within a certain factor of the optimum. These algorithms

are called approximation algorithms. In single-criterion optimization they are defined

as follows:

Definition 1.4 (α-approximation algorithm). Let P be a single-criterion minimiza-

tion problem, and let α > 1. An α-approximation algorithm is an algorithm that for

any instance I = (X , c) of P computes a solution x′ ∈ X in time polynomial in |I|
with c(x′) ≤ α ·minx∈X c(x).

Sometimes we can even choose the approximation factor α arbitrarily close to 1.

These algorithms are called‘ approximation schemes.

Definition 1.5 ((Fully) polynomial time approximation scheme). Let P be a single-

criterion minimization problem. A polynomial time approximation scheme (PTAS)

is a family of algorithms that for every ε > 0 contains a (1 + ε)-approximation

algorithm. A PTAS is called fully polynomial time approximation scheme (FPTAS),

if the running time of the algorithms is polynomial in 1
ε
(and |I|).

This concept has been extended to multicriteria optimization, e.g. by Papadim-

itriou and Yannakakis [PY00]. They only consider approximation schemes, however.

To include constant factor approximations, we use a slightly different notation:
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Definition 1.6 (α-approximate Pareto set, (F)PTAS for the Pareto set). Let P be

a multicriteria minimization problem with a set of cost vectors Y ⊆ k
≥0, and let

α > 1.

An α-approximate Pareto set is a set Yα ⊆ Y such that for all y ∈ YP there is

y′ ∈ Yα with y′ ≤ αy.

An α-approximation algorithm for the Pareto set of P is an algorithm that, for

any instance I of P, constructs an α-approximate Pareto set in time polynomial in

|I|.
An (F)PTAS for the Pareto set of P is a family of algorithms that, for all ε > 0,

contains a (1 + ε)-approximation algorithm for the Pareto set of P (with running

time polynomial in 1
ε
for FPTAS).

We conclude this preliminary section with some remarks on the reference point

objective function, on a complexity issue, and on the norms we want to consider.

The constant in the objective. Since ‖yrp‖λ is a constant, exact minimization

of (1.1) boils down to minimizing the distance ‖y − yrp‖λ, as the level sets of this

function are identical to that of the reference point objective function. Still, for

judging the quality of an approximation, this short-cut is not permissible, as the

following trivial example shows.

Consider a multicriteria problem defined by k unrelated copies of a single-criterion

optimization problem, for which we have a tight approximation algorithm with factor

α. Let the distance be measured in any norm, and choose the ideal point as a

reference point. As the single criteria problems are unrelated, one expects that

solving each problem separately by the approximation algorithm gives an O(α)-

approximation for the reference point solution. This is indeed true for the reference

point objective function. However, for minimizing the distance, the ratio to the

optimum is infinite, because the optimum attains the ideal point for the unrelated

problems, and thus the optimal distance is zero.

Conversely, any approximation algorithm for the distance ‖y − yrp‖ could be

turned into an algorithm that solves the single-criterion problem exactly, as the

minimal distance to the ideal point is 0 when focusing on a single criterion. Thus,

we cannot hope for approximating the distance ‖y − yrp‖ for any problem that is

NP-hard in the single-criterion version. In contrast to that, for the objective z(y) we

do get positive approximation results also for NP-hard problems.

Also note that an α-approximate solution for the distance to the reference point

also is an α-approximate solution for the reference point objective function. There-

fore, any result in this thesis that depends on the existence of an approximation for

reference point methods in particular holds if the ‖y − yrp‖ can be approximately

minimized.
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Caveat on complexity. We want to remark that although the concept of reference

point solutions is a generalization of compromise solutions, in terms of complexity

CP is not a special case of RP. In the former problem, the ideal point is not

given, while in the latter case the reference point is part of the input. This leads

to different consequences if the underlying single-criterion problem cannot be solved

in polynomial time. In this case, the objective function of CP is hard to evaluate.

However, in the context of approximability this is only a minor issue, as Corollary 2.5

shows.

For RP, on the other hand, it becomes hard to verify feasibility of the input. In

our setting, a specified reference point is only feasible if it is utopian, i.e. yrp ≤ yid.

The best we can expect from an algorithm is to approximately distinguish between

feasible and infeasible instances, i.e., an α-approximation algorithm needs to accept

all feasible inputs and reject all instances where yrp
i > α · yid

i for some i ∈ [k], but

it might also accept instances with slightly infeasible reference points, as long as

yrp ≤ αyid.

We will get rid of this artifact with the extension discussed in Chapter 5.

Norms. Throughout this thesis, we will restrict to norms fulfilling the following

two properties.

Definition 1.7 (Monotone and polynomially decidable norms). A norm ‖·‖ on k

is called monotone, if for any y′, y′′ ∈ k
≥0, y

′ ≤ y′′ implies ‖y′‖ ≤ ‖y′′‖. It is called
polynomially decidable, if we can decide whether ‖y′‖ ≤ ‖y′′‖ in time polynomial in

the encoding length of y′ and y′′.

Remark. We need monotonicity in order to get Pareto optimality of reference point

solutions. For a non-monotone norm, it might be the case that y dominates y′, but
still z(y′) < z(y). If the norm is monotone, however, there always exists at least one

Pareto optimal reference point solution, since in this case from y ≤ y′ it follows that
z(y) ≤ z(y′).

Remark. Note that not all norms are monotone. Consider for example the norm in
2 defined by

‖y‖ = ‖Ay‖1 = TAy, with =

(
1

1

)
, A =

(
1 1

−2 2

)
.

Consider now the vectors y′ = (0, 3) and y′′ = (4, 4). Then we have y′ ≤ y′′, but
‖y′‖ = 9 > 8 = ‖y′′‖.
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