
Chapter 1

Introduction

Joint modelling is a methodology which can be suitable for a wide range of applications.
Wherever one might have two or more dependent variables, the question arises on how
to account for dependencies between these variables. This chapter will introduce a few
examples of situations, where such an approach could be deemed useful. The historical
development for single examples and a stepwise improvement from rather simple models
to more complicated ones will be shown, incorporating different forms of interdependency.

� The sales numbers of competing products in a given time frame and location. The
marginal distributions can, depending on the situation, be assumed to be Poisson
or Negative Binomial, both representing count data. It is obvious that some sort
of dependency might exist, as consumers are deciding on only a single one of the
products. Different car brands could be an example for this. Covariates might be
each car brand’s characteristics but also external conditions, such as buying power
in a given country.

� The number of points / goals scored by teams or single players in a given match
in sports. As above, depending on the ranges (so primarily on the sport), count
data distributions, such as Poisson or Negative Binomial, can be used for marginal
distributions. The necessity to account for dependency between the scores / goals is
rather easy to justify, as scored points during the game heavily influence the further
course of the match. Covariates might be specific team or player strengths and
characteristics, influencing both the team/player itself as well as the opponent and
external factors like location or weather.

� The results of a blood panel. One might be interested in the occurrence of different
substances or cells in a blood sample. The density could be modelled with suitable
marginal continuous distributions. If the number of cells per unit of blood is count-
able, count data approaches as mentioned above are applicable again. One could
imagine to observe the number of observed red and white blood cells in a given
sample. Potential covariates might cover information about the patient as well as
other results from the blood sample. Even in situations where no specific depend-
ency was expected, it might be useful to try to account for it. The resulting model
can (and should) be analysed to decide if the incorporated dependency is needed in
an explorative manner.

The easiest approach in the settings mentioned above (and numerous more) is the
assumption of independence. In this case, the two or more marginal distributions can be
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modelled independently from one another. This work is focussed on the usage of copulas
to model and assess dependency structures in such bivariate outcomes.

1.1 Guideline Through the Thesis and Description of

Originality and Contributed Work

This thesis is based on the idea of applying copula regression to model the outcome of
football matches. As with everything in life, issues occurred that needed solving. Solving
these issues and presenting the corresponding results is the common thread and backbone
of this work.

The following parts of Chapter 1 contain a brief historical summary of the develop-
ment for modelling football results. Afterwards, a short introduction to the notation of
generalised regression settings as well as to copulas is given. The rest of the thesis is
structured as follows:

Chapter 2 - A Penalisation Approach for Competitive Settings

Introduces a penalty to account for competitive settings, in which marginal
covariates with identical interpretations should be forced to obtain similar or
equal effects. This was directly motivated by the application to FIFA World
Cup data. Imagine a covariate influencing both margins, such as weather
or spectator count. Any difference in those influences between the first and
second margin (first and second named teams) can only be artefacts, as no
underlying reason for being first or second named exists, apart from FIFA
tournament schedules. So it may be favourable to force the corresponding
regression coefficients to be identical. The same can be applied for two differ-
ent covariates that share an interpretation, such as each team’s market value.
Why would the first team’s market value have a different influence on the
first team’s performance compared to the second team’s market value on the
second team’s performance? A suitable penalisation scheme was proposed,
implemented and tested in a simulation study. The methodology and simu-
lation study were published in van der Wurp et al. (2020). An experiment
in real time on Bundesliga data was carried out and previously unpublished
results are included in Chapter 2.

This work relies heavily on the GJRM framework provided by Marra and Radice
(2019b), who also cooperated in van der Wurp et al. (2020), mainly to describe
GJRM’s main methodology. The research idea of introducing regularisation
into the framework originates from Andreas Groll and Thomas Kneib, who
co-authored the manuscript and improved it with valuable proof reading. The
author of this thesis contributed the exact elaboration and formulation of the
proposed penalisation scheme. He performed all implementations and created
both the simulations and applications.
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Chapter 3 - An Approach to Variable Selection via LASSO-Type Penalisation

Introduces a more general penalisation framework to obtain sparsity. While
the penalty from Chapter 2 is able to reduce the complexity of a model, no true
variable selection takes place. To incorporate this, a LASSO approximation
was derived from existing approximations, implemented and, again, tested on
simulated data. The methodology and simulation study were published in
van der Wurp and Groll (2023a).

Resting on the GJRM framework and the novel penalty from Chapter 2, An-
dreas Groll suggested to include true variable selection with a LASSO-type
penalty approach. He proposed the approximation of the LASSO, based on
the work of Oelker and Tutz (2017) and had contact to the authors thereof.
The author of this thesis formalised and implemented the penalisation scheme
in the underlying setting. He performed all simulations and applications.

Chapter 4 - An Application to FIFA World Cups

The penalties introduced in Chapters 2 and 3 are extensively evaluated on
the FIFA World Cup dataset. Measures for predictive quality are defined and
calculated for models without penalisation, with each penalty on its own and
with both of them combined. This chapter is a combined and rewritten version
with recalculated results from both van der Wurp et al. (2020) and van der
Wurp and Groll (2023a).

Chapter 5 - Case Study: Football and Machine Learning

In this chapter, we compare classical univariate regression approaches with
copula models explicitly accounting for the dependency structure as well as
with modern machine learning techniques in the context of modelling and pre-
dicting football results in the major European leagues. Particularly, we want
to present an extensive data set compiled from publicly available sources con-
taining data and match results from the first men’s football divisions from Eng-
land, France, Germany, Italy, Spain (often referred to as the “big five”), the
Netherlands and Turkey. We introduce several modelling approaches to pre-
dict upcoming matches and compare their predictive strengths. The gathered
data set is presented in detail and made publicly available to motivate further
work and modelling ideas.

The case study, published in van der Wurp and Groll (2023b), was mainly per-
formed by the author of this thesis. Andreas Groll took part in proof reading,
was consulted occasionally, and helped with revisions during the publication
process.

As both methodology-based chapters (Chapter 2 and Chapter 3) should be compre-
hensible on their own, some redundant notational introductions and definitions (especially
for quality of prediction measures) occur. The case study in Chapter 5 can be read com-
pletely on its own as the published version is very close to this chapter, with its own intro-
duction and conclusion. All applications and simulations can be reproduced. Code and
data was made available via GitHub, https://github.com/H-vanderWurp/GJRM-mods.
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Historical Development for Modelling Football Res-

ults

This section is mainly taken from van der Wurp et al. (2020) and focusses on sports and
especially football data. Due to the rather small and low range of scored goals during a
match, the Poisson distribution is often deemed sufficient.

Poisson distributions to model football results are well established and have been
widely used, see e.g. Lee (1997) or Dyte and Clarke (2000), who modelled the number of
the teams’ goals with independent Poisson distributions. Maher (1982) and Dixon and
Coles (1997) were among the first to investigate dependency between scores of competing
teams. They included an additional dependence parameter into the independent Poisson
approach to adjust for certain under- and overrepresented match results, as their first
results suggested an underestimation of matches ending with a draw.

Regularisation was introduced to the (mostly independent) Poisson approach plenti-
fully, see e. g. Groll and Abedieh (2013) or Groll et al. (2015), who used LASSO penal-
isation (originally proposed by Tibshirani, 1996) in the context of football data.

Regarding dependencies, Karlis and Ntzoufras (2003) used a bivariate Poisson dis-
tribution approach which is explicitly accounting for dependencies. A lot of variations
of this underlying idea have been presented. For example, Groll et al. (2018) created a
re-parametrisation to tweak the model as they saw fit.

Due to its computational intense nature, the use of copulas in this context is rather
new. Nikoloulopoulos and Karlis (2010) and Trivedi and Zimmer (2017) used copulas to
account for dependency when modelling bivariate count data.

Parallel to this, other machine learning approaches such as random forests (e.g.
Schauberger and Groll, 2018 and Groll et al., 2019, methodology from Breiman, 2001)
have become popular alternatives to regression approaches and will regularly be used as
benchmark models throughout this work.

1.2 Notation and Basics

For the introduction of regression modelling we will stick close to Fahrmeir et al. (2013)
and the Chapters 2 and 3 thereof. Formulae and basic properties of regression are taken
from there.

In the context of multivariate regression frameworks we are to model an outcome
variable y depending on covariate variables x = (x1, . . . , xp)

T which leads to the goal of
estimating the expected value E(y|x) conditioned on given covariates. The regression
model can be written as

y = g(x1, . . . , xp) + ε,

with ε denoting the random noise. The classical linear regression model is using

g(x1, . . . , xp) = β0 + β1x1 + . . .+ βpxp, (1.1)

with purely linear and additive covariates’ effects. For assumptions and detailed properties
see appropriate literature, e.g. Fahrmeir et al. (2013), Chapter 3. The (ordinary) least
squares estimator β̂ = (β0, β1, . . . , βp)

T is given in closed form by

β̂ = (XTX)−1XTy, with design matrix X =

⎛⎜⎝xT
1
...
xT
n

⎞⎟⎠ ,
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and y = (y1, . . . , yn)
T . The (ordinary) least squares solution is viable whenever g(x) = x

given assumptions.
One core assumption usually is Gaussian errors, i.e. ε ∼ N(0, σ2), which will not

hold in settings with very distinct distributions. As this work focusses on count data and
sports applications, the Poisson distribution is an intuitive example:

We call a random variable X to be Poisson-distributed, written X ∼ Poi(λ), if the
underlying probability mass function is

f(x) =
λx

x!
exp(−λ),

with its parameter λ > 0. The support of X is {0, 1, . . .} = N0. Further properties are
E(X) = λ and Var(X) = λ.

As the value set of g(·) from Equation (1.1) is the full real scale R, which is incompatible
with modelling E(y) = λ > 0, some transformation needs to be done. The exp-function
is sufficient, so we obtain

λ = exp(η) = exp(β0 + β1x1 + . . .+ βpxp)

= exp(β0) · exp(β1x1) · . . . · exp(βpxp)

⇔ log(λ) = η = β0 + β1x1 + . . .+ βpxp,

with η denoting the shortened linear predictor. In general, other functions instead of
log(·) can be used on the left hand side. They are called link functions and are chosen
depending on the underlying distribution. These approaches are called generalised linear
models and are usually abbreviated via GLM. The coefficients βββ = (β0, β1, . . . , βp)

T can
be interpreted as a linear influence for the standard (Gaussian) regression, i.e. adding the
value of βk to the prediction of ŷ for each unit increase in xk. In the case of a Poisson
regression the effects are interpreted multiplicatively, as exp(βkxk) = (exp(βk))

xk . So with
each increase in xk of one unit the response λ̂ is multiplied by a factor of exp(βk).

1.3 Motivation for Copulas

As discussed before, the dependency structure within bivariate football match outcomes
is widely discussed in the literature and a multitude of different approaches have been
presented. To get some sense of what these bivariate structures could look like, see
Table 1.1. A home advantage is easy to see, as almost all results (x, y) with x > y
(upper triangle above bold diagonal) were occurring more often than their respective
counterparts (y, x) (lower triangle below bold diagonal). The underlying structure can be
highlighted in color, see Figure 1.1. The data can be found in the EUfootball R-package
(van der Wurp, 2022). But as the grid for football results is rather coarse, we take a
look at another sport, namely basketball and the NBA (National Basketball Association)
in Figure 1.2 with data from kaggle.com (source Lauga, 2021). A positive dependence
(in terms of correlation) is easy to see. And while copulas are not needed to grasp a
simple correlation, they are immensely flexible and can depict a huge selection of different
dependency structures. Figure 1.3 is an example to show the possibilities in terms of
different structures that can be obtained with copulas. Even within a single class, here
Frank, a lot of different shapes can be depicted. We assume that a “best fitting” copula
class can be found for every situation, e.g. every type or sports. Even different occasions
within a given sport, say FIFA World Cups vs. club football in the German Bundesliga
vs. amateur or youth football matches could be modelled using different copula classes.
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Table 1.1: Amount of Bundesliga match outcomes of seasons 2010/2011 until 2019/2020,
n = 3060. Diagonal in bold to highlight tied matches.

9 0 0 1 0 0 0 0 0 0
8 3 1 0 0 0 0 0 0 0
7 3 2 0 0 0 0 0 0 0
6 14 9 7 0 0 0 0 0 0

Goals of 5 29 25 7 4 1 0 0 0 0
Home Team 4 65 63 36 6 6 3 0 0 0

3 142 158 80 43 6 4 1 0 0
2 234 268 154 59 24 7 3 0 0
1 228 342 196 118 49 12 6 0 1
0 190 185 137 78 38 7 4 1 0
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Figure 1.1: Amount of Bundesliga match outcomes of season 2010/2011 until 2019/2020,
n = 3060. Colour brightness indicates more frequent outcomes.

1.4 Introduction to Copulas

In this section we give a brief notational overview about multivariate distributions via
copulas. For more details we recommend Nelsen (2006) (especially Chapter 2 therein),
from where properties and formulae were taken.

Assume two random variables Y1 and Y2 with their respective probability mass func-
tions f1, f2 and their distribution functions F1, F2. We are interested in the joint distri-
bution function H(y1, y2), H : S1 × S2 → [0, 1]. S1 and S2 are denoting the supports of
Y1 and Y2, respectively, which are N0 in the case of Poisson distributions.

The well known Sklar’s theorem (originally by Sklar, 1959) states for every such H
with given marginal distributions F1 and F2 a copula function C such as

H(y1, y2) = C(F1(y1), F2(y2))

exists. The copula itself is therefore a function C : [0, 1]2 → [0, 1]. Although this work
will only use this bivariate setting, the methodology is generally not bound to the two-
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Figure 1.2: Amount of NBA match outcomes between 2004 and 2021, n = 24 195. Col-
our brightness indicates more frequent outcomes.

Frank Frank Frank

Clayton Gumbel AMH

Figure 1.3: Contour plots for different copula classes. Arbitrarily chosen copula para-
meters to show the range of different dependency structures that can be
depicted. Contour lines (inner to outer) show a decreasing density.

dimensional case. Extensive lists of copula functions, their densities and properties can be
found in Nelsen (2006). The AMH (Ali-Mikhail-Haq) copula for example is the function

Cθ(z1, z2) =
z1z2

1− θ(1− z1)(1− z2)
with z1, z2 ∈ [0, 1].

The copula’s parameter θ is limited to [−1, 1) for this class, but has widely varying support
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in different copula classes. Hence, θ itself is not comparable between different copulas.
To allow for comparisons, we will use Kendall’s τ as a measure for dependency strength.
For the AMH copula, for example, it is calculated via (Kumar, 2010)

τ =
3θ − 2

3θ
− 2(1− θ)2 log(1− θ)

3θ2
∈ [−1, 1].

Kendall’s τ is a measure on concordance and discordance, defined via

τ = P (concordance)− P (discordance).

Two bivariate samples (X1, Y1), (X2, Y2) are concordant, if (X1−X2)(Y1−Y2) > 0 holds, so
if both factors are having the same sign. And they are discordant, if (X1−X2)(Y1−Y2) < 0
holds, so both parentheses are yielding different signs. Kendall’s τ can be calculated both
empirically (if samples are available) or theoretically. See Chapter 5 in Nelsen (2006) for
more details. For most parts of this work we will refer to Kendall’s τ as a general measure
for dependency strength when comparing different copula classes, as their θ parameters
are generally not comparable.

1.5 Underlying Methodology of the GJRM Frame-

work

The following section will present the underlying methodology of joint modelling and
how it is implemented in the R add-on package GJRM by Marra and Radice (2019b). The
package’s authors have presented their work and it’s benefits in Marra and Radice (2017)
and showed a set of different approaches applicable via their package in Marra and Radice
(2019a). The section is mostly taken from van der Wurp et al. (2020).

For notational convenience, we drop the conditioning on parameters (of the mar-
ginal distributions and of the copula function) and observation index i. It is clear, how-
ever, from the context of this work that bivariate count data with integer realisations
yi = (yi1, yi2)

T , with i = 1, . . . , n, for a sample of size n, are available (e.g. football scores
or sales numbers) for modelling purposes and that covariate effects have to be accounted
for.

We assume that the joint cumulative distribution function (cdf) F (·, ·) of two discrete
outcome variables, Y1 ∈ N0 and Y2 ∈ N0, can be expressed as

P (Y1 ≤ y1, Y2 ≤ y2) = Cθ (P (Y1 ≤ y1), P (Y2 ≤ y2))

= Cθ(F1(y1), F2(y2)) ,

where F1(·) and F2(·) are the marginal cdfs of Y1 and Y2 taking values in (0, 1), Cθ :
(0, 1)2 → (0, 1) is a copula function which does not depend on the marginals, and θ de-
notes the copula parameter measuring the dependence between the two random variables.
The adopted dependence structure relies on Cθ(·, ·) and its parameter θ; the copulas im-
plemented in GJRM are reported, for instance, in Table 1 of Marra and Radice (2019a). It
should be pointed out that in a setting with discrete marginal distributions the copula
function Cθ is not unique (see Schweizer and Sklar, 1983, Chapter 6; or Faugeras, 2017).
However, as elaborated by several authors including Nikoloulopoulos and Karlis (2010)
and Trivedi and Zimmer (2017), this is not an issue of practical concern in regression
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settings. Potentially, another copula function C∗ exists that can create the same probab-
ilities on the grid implied by discrete marginal distributions. As the marginal distributions
and their respective predictors are not influenced by this, we retain interpretability on
corresponding estimated regression coefficients.

Following Trivedi and Zimmer (2017), the joint probability mass function (pmf) cθ(·, ·)
for a given copula Cθ on the two-dimensional integer grid can be obtained as

cθ(F1(y1), F2(y2)) = Cθ(F1(y1), F2(y2)) (1.2)

− Cθ(F1(y1 − 1), F2(y2))

− Cθ(F1(y1), F2(y2 − 1))

+ Cθ(F1(y1 − 1), F2(y2 − 1)).

For the outcome variables Y1 and Y2, the authors of GJRM have considered (and im-
plemented) four main discrete distributions, namely Poisson, negative binomial type I,
negative binomial type II, and Poisson inverse Gaussian; these have been parametrised
according to Rigby and Stasinopoulos (2005). In the following, we focus on Poisson mar-
ginals since they were found to be appropriate for modelling our count responses (see
applications in Section 2.3 and Chapter 4).

Let now the parameters of the two marginal distributions as well as of the copula para-
meter θ be connected with sets of covariates of sizes p1, p2 and pθ, respectively. Moreover,
let the corresponding covariate vectors be denoted by x1, x2 and xθ, including entries for
intercepts and/or dummy variables for categorical variables. For two Poisson-distributed
margins with rate parameters λ1 and λ2 and a copula function characterised by one para-
meter, we may have

log(λ1) = η1 = β
(1)
0 + x

(1)
1 β

(1)
1 + . . .+ x(1)

p1
β(1)
p1

= (x(1))Tβ(1) ,

log(λ2) = η2 = β
(2)
0 + x

(2)
1 β

(2)
1 + . . .+ x(2)

p2
β(2)
p2

(1.3)

= (x(2))Tβ(2) ,

g(θ) = ηθ = β
(θ)
0 + x

(θ)
1θ β

(θ)
1θ + . . .+ x(θ)

pθ
β(θ)
pθ

= (x(θ))Tβ(θ) ,

where β(1),β(2) and β(θ) are p1-, p2- and pθ-dimensional vectors of regression effects,
respectively. The logarithmic link function guarantees positivity of the two Poisson para-
meters λ1 and λ2. Other distributions may require different link functions. The vec-
tors x(1), x(2) and x(θ) are subsets of a complete set of covariates x of size d, with
p1 + p2 + pθ = k ≥ d. Finally, g(·) is a link function whose choice will depend on the
employed copula (see Marra and Radice, 2019a).

We would like to stress that the Equations (1.3) represent a substantial simplification
of the possibilities allowed for in the proposed modelling framework. In particular, our
implementation allows to include non-linear functions of continuous covariates, smooth
interactions between continuous and/or discrete variables and spatial effects, to name but
a few. For this purpose, the penalised regression spline approach was adopted and the
reader is referred to, e.g., Marra and Radice (2017) for some examples. Due to the specific
type of penalisation employed in this work (see Chapters 2 and 3), here we focus on linear
effects as presented in (1.3).
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The model’s log-likelihood for the k-dimensional vector

βT =
(︂
(β(1))T , (β(2))T , (β(θ))T

)︂
is

ℓ(β) =
n∑︂

i=1

log {cθ (F1(yi1), F2(yi2))} , (1.4)

where, for j = 1, 2,

Fj(yij) = exp(− exp(ηij))

yij∑︂
m=0

exp(ηij)
m

m!
.

If spline terms appear in the model specification then (1.4) has to be augmented by a
quadratic penalty term whose role would be to enforce specific properties on the respective
functions, such as smoothness.

Simultaneous estimation of all the parameters is based on maximising ℓ(β) with respect
to β. To this end, we extended the estimation approach of the R package GJRM (Marra and
Radice, 2019b) to accommodate discrete margins. The fitting algorithm is based on iterat-
ive calls of a trust region algorithm, which requires first and second order analytical deriv-
atives, which have been tediously derived and verified numerically. In R, the algorithm is
realised in the trust() function from the trust package by Geyer (2015). The modular-
ity of the implementation means that, in principle, it will be easy to extend our modelling
framework to parametric copulas and discrete marginal distributions not included in the
package. To facilitate the computational developments, when evaluating (1.2), we replaced
Fj(yj − 1) with Fj(yj)−fj(yj) for j = 1, 2, where fj(·) denotes the jth marginal pmf. This
is especially relevant for the case yj = 0 where Fj(−1) needs to be set to 0.

As hinted above, the GJRM infrastructure allows one to incorporate1 any quadratic
penalty of the form 1

2
βTSβ , where S is a penalty matrix. The next section discusses a

specification of penalty which is particularly useful for competitive settings.

Prediction

After fitting a model, we can calculate probabilities for each possible pair of outcomes.
We will sketch this modus operandi for the following football application, but it could be
easily generalised to different data situations and marginal distributions. First, based on

the two teams’ estimated coefficients β̂
(j)
, j = 1, 2, for an arbitrary match i, we estimate

the marginal Poisson parameters λ1 and λ2 using

ˆ︁λi1 = exp(ˆ︁η(1)i ) = exp
(︂
(x

(1)
i )T β̂

(1)
)︂
,

ˆ︁λi2 = exp(ˆ︁η(2)i ) = exp
(︂
(x

(2)
i )T β̂

(2)
)︂
.

We then use the copula package (Hofert et al., 2017) to obtain the joint function for a

specific chosen copula with Poisson margins and parameters ˆ︁λi1, ˆ︁λi2 and ˆ︁θ. The probability
for a specific match outcome (y1, y2) can be calculated using the joint pmf described above.

1On details of the implementation modifications see Appendix B.




