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Introduction

Just as mechanical constructs have lifetime and reliability limits, electronic compo-
nents in general, and semiconductor devices in particular, can fail when reaching
their technical limits as well. This can lead to a malfunctioning or complete failure
of the superior system, may it be a consumer product, a leading-edge industrial
application, or a safety-critical system in cars and airplanes. In order to test the
coverage of customer’s requirements by the reliability limits of the device, reliability
qualification is performed.

The current situation in reliability qualification and testing of semiconductor de-
vices is challenging, because already well-established qualification test-plans are
confronted with novel and more demanding lifetime requirements than ever before.
Especially in the automotive sector, with its mega-trends of driver assistance sys-
tems, autonomous driving, electric mobility and car connectivity on their way into
the market, new lifetime and failure rate requirements appear that are new to the
automotive supply chain. Thus, qualification plans that have fixed test conditions
and test times cannot withstand the current evolution. In conclusion, to satisfy
the needs for adequate reliability qualification, new approaches are necessary and
inevitable for assuring failure free products in the future.

“

If an automotive [original equipment manufacturer (OEM) ] goes to their
tier 1 or 2 and asked for a system with a failures in time (FIT) rate of 1
per billion hours of operation, and you take an existing 100 million gate
chip and place the same requirement on that supplier – we don’t even
really know what that means. How do I take a 100 million gate chip and
determine that is has a FIT of 1 per billion hours of operation? When I
first found out how this is being done today, I tried to turn off all of the
electronics in my car. If that was how they determined that it was safe,
then I was better off without the electronics.

”
— Apurva Kalia, vice president of Research & Development in the System
and Verification group of Cadence. [Bai18]
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1 Introduction

A step has to be made towards mission profile aware reliability and robustness vali-
dation, which is a thorough evaluation of all reliability aspects of the technology and
product as well as the specific requirements imposed on it. This includes an advanced
understanding and modeling of the real environmental and functional stresses on the
product, a concept of time-saving and more elaborated testing, suitable reliability
theory and models, and of course empirical validation of all the aforementioned.

Chapter 2 provides the necessary foundations in the areas of statistical description
of failure behavior and reliability predictions based on accelerated testing in order to
enable the assessment of the reliability investigations and statements appropriately.
The introduced concepts are clearly illustrated and pitfalls in the implementation
are pointed out.

Chapter 3 elaborates the presented methods on the basis of the failure mechanism
of time-dependent dielectric breakdown. The current state of research on the failure
physics and the methods used to investigate the reliability behavior of this mecha-
nism are presented in detail. They are illustrated comprehensively on the basis of
in-house measurements and in comparison with qualification data from a semicon-
ductor manufacturer.

Chapter 4 outlines the reasons for the importance of processing and evaluating
mission profile based reliability requirements for the automotive industry and the
fact that fundamental aspects have not yet been fully described and empirically
verified. First using well-known cumulative damage models, the failure behavior of
semiconductor components under alternating step-stresses is analyzed and essential
differences are identified. The gained insights are then used to develop a method
to transform mission profile stresses into effective stress conditions. This is demon-
strated and proven by cyclical stress measurements for the stressors voltage and
temperature, which were conducted for the first time. Furthermore, findings are
made about the applicability of cumulative damage models that have not previously
been reported in this context. Finally, the coupling of stressors in multi-dimensional
mission profiles is examined in detail and the consequences of consideration and ne-
glect of these interdependencies are clearly illustrated using a real-world example.

Chapter 5 highlights the specific challenges that can be addressed using more so-
phisticated reliability testing methods. In particular, voltage ramp-stress testing can
provide significant benefits for wafer level reliability in technology development and
production. The individual stress transformation characteristics of the four volt-
age acceleration models used for dielectric breakdown are analyzed comprehensively
and the implications for the scale and shape parameters of the ramped failure dis-
tribution are elaborated. Finally, the capabilities of ramp-stress measurements for
model verification and parameter fitting are presented and compared to the standard
methods currently used in reliability qualification.

Chapter 6 concisely summarizes the results and contributions of this work. Potential
fields for further research and new as-yet unsolved issues are identified and outlined.
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2
Theory of Reliability Testing

To characterize a given component in terms of reliability prediction, an understand-
ing of statistical distributions and reliability methodology is necessary. Hence, this
chapter will give an introduction into the theory of reliability testing. Especially, the
statistical methods and distributions used in this work will be described in detail.

For a greater insight into the topic of reliability, the works of A. Strong [Str09] and
J. McPherson [McP19] are recommended as supplementary literature. As an ex-
cursion into statistical methods, the respective handbook of the American National
Institute of Standards and Technology (NIST) [NIS13] is endorsed.

2.1 Statistical Description of Failures

To begin with, fundamental terms, definitions, and concepts are introduced to fa-
cilitate the understanding of the following chapters.

2.1.1 Basic Concepts of Failure Statistics

When expressing failure behavior in a mathematical way, the first encountered term
is the failure function F (t). It simply describes the probability that a device will
fail at or before time t. It is expressed as cumulated failed percentage of a given
population and is generally a continuously increasing function. Contrarily, the sur-
vival or reliability function R(t) states the probability that a device has not failed
and thus is still working until time t. Failure and survival are considered to be
complementary by nature:

F (t) = 1 − R(t) (2.1)
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2 Theory of Reliability Testing
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Figure 2.1: Complementary behavior of (a) the failure function and (b) reliability
function for the same population.

Both functions are illustrated in Fig. 2.1 and exhibit function values ranging from
0 to 1 and vice versa, until the entire population has failed. [Str09]

Due to its cumulative behavior, the failure function F (t) is also called cumulative
distribution function (CDF). When explicitly talking about the empirically obtained
failure function, the terms empirical CDF or empirical distribution function (EDF)
are often used. As depicted in Fig. 2.2a, the EDF exhibits steps-like behavior due
to the discrete nature of measured data. The CDF, whether derived theoretically
or fitted from data, is usually displayed as a continuous function.

When failures are not described in a cumulative way but rather as failures in each
period of time, the derived progression is called probablity density function (PDF)
f(t). It is the derivative of the CDF F (t) and can be for example displayed as a
histogram for empirical data:

f(t) = dF (t)
dt

or F (t) =
∫ t

0
f(x) dx (2.2)

The PDF is usually the most encountered function when dealing with probability
distributions in mathematical analysis because of its convenient properties as density
function of the distribution (see Fig. 2.2b). [Str09]

Another important concept in statistics is that of the instantaneous failure rate (FR)
or hazard function h(t). It states the probability of the surviving specimens at time
t to fail within the next time frame. It is expressed as the PDF f(t) divided by the
remaining survivors, which is given by the reliability function R(t):

h(t) = f(t)
1 − F (t) = f(t)

R(t) (2.3)
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Figure 2.2: (a) CDF of a Weibull distribution and EDF of randomly generated data,
often depicted as a stairstep graph. (b) CDF and its derivation PDF.

It is often used for describing the reliability behavior in certain time spans of a
system’s course of life or when fail probability of the current state and the immediate
future is discussed. The most prominent application of the hazard function, the so-
called bathtub curve, is described in the following section 2.1.2. [Str09]

For certain time frames, the average failure rate (AFR) 〈h(t)〉 can be an interesting
figure of merit when comparing products from different suppliers for fails during
equal time intervals, like the first year or the required lifetime of the component or
system. The AFR is defined as the total number of fails within a given interval of
time. In the reliability community, AFR represents a rate and is usually given in
units of failures in time (FIT), which is fails per billion device hours (10−9/h):

〈h(t)〉 =

∫ t

0
h(x) dx∫ t

0
dx

= 1
t

∫ t

0

f(x)
1 − F (x) dx = 1

t
ln
[

1
1 − F (t)

]
(2.4)

Along with the AFR, there is also a reciprocal expression of this rate called mean
time between failures (MTBF) (MTBF = 1/〈h(t)〉), which acts as a very important
parameter for reliability statements as well.

The last concept in this introductory section will be that of the acceleration factor
(AF). The dimensionless quantity AF is defined as the ratio between two failure
times, often named time-to-failure (TTF), which are corresponding failure times of
the same or different distributions:

AF = TTFnop

TTFacc
(2.5)

In manner of speaking, the corresponding stress level of TTFacc is said to be AF-
times more accelerated than the stress level under normal operating conditions of
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2 Theory of Reliability Testing

TTFnop (if AF > 1). In case of AF < 1, the relation of these stress levels would be
referred to as deceleration — or the fraction would simply be inverted in order to
conform to the prior statement. The application of AF is universal and can be used
for reliability requirements, measurements, and extrapolations alike. Hence, there
is no consistent definition covering all individual cases.

2.1.2 The Bathtub Curve

The most used image for visualizing the reliability behavior of any system or de-
vice is probably the so-called bathtub curve for reliability. It depicts the relation of
instant failure rate h(t) to lifetime and consists of three different segments. These
are shown in Fig. 2.3a–c as falling, constant, and rising regime, which give it, be-
cause of the bathtub-like appearance, its descriptive name. Regardless of whether
semiconductor devices, living beings, or structural components are being described
by this curve, generally speaking, these main characteristics apply to all statistical
failure mechanisms.

The first segment on the left is the early fails or infant mortality region, named
early failure rate (EFR). It is caused by production and manufacturing related
(gross) defects that results in early fails of the devices even under normal operating
conditions. The failure rate, which is often given units of FIT, is characterized by
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Figure 2.3: The bathtub curve has three distinctive regions (from left to right):
(a) Infant mortality region with strongly decreasing EFR, (b) operating
life with an overall low IFR, and (c) end-of-life when the wear-out failure
rate increases until all specimens have failed.
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2.1 Statistical Description of Failures

a considerably high starting value and a following rapid decrease usually within the
warranty period of the product.

In order to minimize the impact early fails have on customer satisfaction, one method
for the manufacturer is to screen out such material and production defects by a so-
called burn-in stress, where weak devices will fail under short and highly accelerated
stress conditions. However, the burn-in conditions have to be precisely adjusted to
not cause unnecessary degradation and premature aging of the remaining speci-
mens. The other approach, more suitable for high-value products, is a specially
tailored guarantee time to absorb the consequences of early fails after shipment to
the customer. [Str09]

After the failure rate drop of the initial EFR regime, a stable and preferably low
intrinsic failure rate (IFR) bottom segment of the bathtub curve emerges — this
is considered the operating life. This area presents the maximal capabilities of the
production and failures are due to intrinsic weaknesses, such as very small defects
in the material [McP19]. While the characteristic of the IFR region is described as
having a constant failure rate in general, the failure rate is usually slightly decreasing
over the span of the operating life [Str09].

For obvious reasons, the operating life regime with the lowest failure rate should
be extended as long as possible before the upcoming wear-out regime with a sharp
increasing failure rate sets in. Even the best devices will start to fail at some point
due to wear-out effects. This is not correlated to any manufacturing or preexisting
material defects but rather the utmost achievable reliability of the used materials
and design-rules under the experienced use conditions [McP19]. This region defines
the end-of-life of the product as eventually all devices will fail. Therefore, the
manufacturer strives to determine the onset of the wear-out accurately to ensure
that the reliability requirements of the customer are met with a high degree of
certainty.

In conclusion, understanding and subsequently controlling all three segments of the
bathtub curve during product development is key to good product reliability.

2.1.3 Failure Distributions

When using the bathtub curve for reliability modeling, the curve’s three regimes, i.e.
early fails, operating life, and wear-out, feature different failure characteristics and
can therefore be described by separate failure distributions. One distribution which
is capable of modeling all regions of the bathtub curve is the renowned Weibull
distribution.

7



2 Theory of Reliability Testing

Weibull Distribution

In 1951, Waloddi Weibull published a distribution function with wide applicability
and illustrated his claim with several examples. This included fitting data from yield
strength and fatigue life of steel, fiber strength of cotton, and size distributions of fly
ash, beans, and humans. Weibull was aware that this function is not always valid,
but hoped for it to be of good service in some cases. [Wei51]

The Weibull distribution in its two-parametric form with scale parameter α and
shape parameter β is valid for times t and parameters α, β all > 0 and given by the
following formulas:

PDF : f(t) =
(

β

α

)
·
(

t

α

)β−1

· exp
⎡
⎣−

(
t

α

)β
⎤
⎦ (2.6a)

CDF : F (t) =
∫ t

0
f(x) dx = 1 − exp

⎡
⎣−

(
t

α

)β
⎤
⎦ (2.6b)

FR : h(t) = f(t)
1 − F (t) =

(
β

α

)
·
(

t

α

)β−1

(2.6c)

AFR : 〈h(t)〉 = 1
t

ln
[

1
1 − F (t)

]
=
(

1
α

)
·
(

t

α

)β−1

(2.6d)

The scale parameter α is the pivot point of the distribution, as can be seen in
Fig. 2.4a, and corresponds to the moment in time when F (α) = 1−exp

[
− (α/α

)β] =
1 − e−1 = 0.63212056 . . . and thus approximately 63 % of the specimens have failed
by that time. The scale parameter α is therefore also known as t63. Due to the
fact that t63 is independent of the shape parameter β, it is called the characteristic
life of the Weibull distribution and also determines the spread of the distribution
as depicted in Fig. 2.4c. Since α is a Weibull distribution specific parameter, it
is usually used in the context of reliability and distribution modeling, whereas the
denotation t63 is generally used to describe experimental data which are considered
to be Weibull distributed. [Str09, Nel82]

Depending on the shape parameter β, the Weibull distribution can change its char-
acteristics and can match or closely resemble other distributions, as can be seen in
Fig. 2.4b. For the case that β = 1, the Weibull distribution reduces to a simple
exponential distribution, for β = 2 it equates to the Rayleigh distribution, and for
larger values β � 10 it approaches the smallest extreme value distribution. In the
mid-range of β ≈ 3.6 the Weibull distribution can resemble the normal distribution
with the largest deviation at about 8 % cumulated fails [Nel82]. Hence the Weibull
shape parameter β has the ability to produce left and right skewed distributions,
which makes it quite convenient for fitting different reliability data of unknown na-
ture as well as the different sections of the bathtub curve. As a rough guideline,
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(a) CDF with different Weibull shape parameter
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Figure 2.4: Different varying scale and shape parameters of the Weibull distribution.
Vertical dashed lines indicate fixed t63 lifetimes.

values of β ≤ 0.8 suggest extrinsic failure mechanisms which most likely cause early
fails and β ≥ 2.4 typically indicates intrinsic wear-out mechanisms [JED16].

Primarily, the application and original purpose of the Weibull distribution is to
model weakest-link type failure mechanisms and problems. That is the probability
that a system made of many components, which are subject to the same failure
distribution, fails due to the failure of a single part or segments — like a chain
fails due to the failure of one of its chain links. Examples for Weibull distributed
events are static or dynamic strengths, electrical insulation breakdowns in dielectrics,
and even the death of living systems. The weakest-link model also applies to the
reliability of assembled systems which will fail if a single component fails and thus
can be described by the Weibull distribution. [Wei51, McP19, Str09, Nel82]
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2 Theory of Reliability Testing

Lognormal Distribution

The second important reliability distribution is the lognormal or logarithmic normal
distribution. As the name indicates, it is derived from and in close relation to the
normal distribution. If Y is a normal distributed random variable, then Z = eY is
lognormal distributed with the scale or median parameter μ, and the shape param-
eter σ [Str09]. The parameter μ is also called log mean and is therefore the mean
of the logarithm of time t. The mean of lifetime, when 50 % of the population have
failed, which is usually denoted as t50, is hence related to μ as μ = ln(t50) (see
Fig. 2.5a). Analogously, the shape parameter σ is called log standard deviation and
is therefore the standard deviation of the logarithm of time t, which can be ap-
proximated by σ ≈ ln(t50) − ln(t16). This of course implies that, unlike time t, the
parameters μ and σ are not times but instead dimensionless numbers [Nel82]. Note
that the formulas and descriptions of the lognormal distribution in this work use
the natural logarithm ln( ) whereas other authors may use the common logarithm
log( ).

The distribution functions of the lognormal distributions are defined with positive
t and σ [McP19, Bro12]:

PDF : f(t) = 1
σt

√
2π

· exp
⎡
⎣−

(
ln(t) − μ

σ
√

2

)2
⎤
⎦ (2.7a)

CDF : F (t) = Φ
(

ln(t) − μ

σ

)
(2.7b)

with the standard normal distribution Φ:

Φ(t) = 1√
2π

∫ t

−∞
exp

(
−x2

2

)
dx (2.8)

With this, the CDF of the lognormal distribution in Eq. (2.7b) can further be
expressed as:

F (t) =
∫ t

0
f(x) dx = 1

2 · erfc
(

μ − ln(t)
σ

√
2

)
, for t ≤ t50 (2.9a)

F (t) =
∫ t

0
f(x) dx = 1 − 1

2 · erfc
(

ln(t) − μ

σ
√

2

)
, for t ≥ t50 (2.9b)

where erfc( ) is the error function complement erfc( ) = 1 − erf( ) and the error
function is given as:

erf(t) = 2√
π

∫ t

0
exp

(
−x2

)
dx (2.10)
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