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Autonomous driving will be one of the key characteristics for modern vehicles in the future,

especially with the objective of saving more people’s lives on the roads due to significant reductions

in the number of traffic accidents. One of the most challenging aspects of autonomous cars are

the safety-critical driving scenarios, such as emergency braking. Their criticality has seldom

been measured in terms of further forensic analysis or software solutions in the field of artificial

intelligence. As a consequence, this paper answers the following scientific question:

How to provide alternative data about some rarely recorded scenarios of safety-critical driving
so as to achieve improved training and validation of machine learning algorithms in the autonomous
driving context?
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I. Motivation
Approximately 1.35 million people die in road accidents each year. [1] [2] [3] [4] [5] Furthermore,

road traffic injuries are the leading cause of death for people aged 5-29 [1] [3] [4]. More than half of

all road traffic deaths occur among vulnerable road users - pedestrians, cyclists, and motorcyclists

[1] [4]. Globally, car accidents have risen to be the 8th leading cause of people’s deaths [1] [5]. In

addition, 20-50 million people suffer non-fatal injuries, often resulting in long-term disabilities [1].

In general, the key factors resulting in the high number of traffic accidents and deaths are: Poor

road infrastructure and management, non road-worthy vehicles, unenforced or non-existent traffic

laws, unsafe driver behaviour, and inadequate post-crash care. There are proven and established

technical systems, such as (advanced) driver-assistance systems, to reduce the number of traffic

accidents [6]. Moreover, autonomous driving has great potential for reducing this even further. It is

one of the key disciplines in the automotive field and currently under intensive development. As a

result, autonomous vehicles could take over complete control themselves. Therefore, the software

components within autonomous cars must be tested efficient and precisely, especially with respect to

safety-critical driving scenarios, such as abrupt lane changes or emergency braking. However, such

driving scenarios are dangerous for those involved and as a result rarely recorded for further forensic

analysis or for machine learning algorithms as part of the autonomous software [7]. Therefore, data

related to safety-critical driving scenarios must be obtained another way. In this context, kinematic

models can be used to represent these scenes by describing the vehicle’s movements based on

defined boundary constraints as well as providing synthesized data through the simulation of a

model for the training and validation of the underlying machine learning algorithms, such as neural
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networks or generative algorithms [7]. In this paper, three of the most significant safety-critical

driving scenarios, namely emergency braking, turning, and overtaking, are modeled accordingly.

II. Modeling real systems
A model is a simplified representation of reality. It is reduced or focused on some essential

functionalities of a real situation. The cases treated in this paper are emergency braking, turning, and

overtaking. Every scientific discipline has its own modeling methodology. So-called prescriptive, or

customizable mathematical models [8] will be employed for the models described in the following

section. The creation of a model is called modeling. Figure 1 shows the typical cycle for creating a

mathematical model.

Fig. 1 Typical modeling cycle for real and mathematical problems

The starting point is a real system or real situation (e. g. a safety-critical driving scenario).

By simplifying the complexity of the real scenario, for example, by ignoring detailed tire forces,

an appropriate real model can be created. Then this is mathematized to create the corresponding

mathematical model. In the following section, such mathematizations will focus on specific

safety-critical driving scenarios. Numerical solutions of the mathematical model, using simulations

(e. g. synthesized data) will be compared with the corresponding real solution (e. g. measurement

of the specific safety-critical driving scenario involved). This cycle is repeated and the mathematical

model is adjusted accordingly until the solution of the mathematical model depicts the real solution

as required. A mathematical model is described by mathematical formulas. The essential parameters

represent natural phenomena. Such models are based on formal descriptions to enable their

subsequent scientific evaluation. Physical models are a subset of mathematical models, and rely on

physical laws, such as kinematic laws or Newton’s laws. Especially for real-time applications, the

mathematical and physical complexity should be as reduced as possible so as to reduce computational

time and fulfill real-time constraints. [8] Mathematical models do have many advantages, which can

be separated and identified as follows: [8]

• Focus on the essential functionalities. This can also improve the comprehensibility of the real

system.

• As an aid for designing, evaluating, or criticizing planned variants of the real system.

• Simulating (critical) experiments that should not be carried out on the real system.

• Rapid testing of hypotheses that are subject to the model conditions or constraints.

• Solving mathematical models is, in general, faster and easier than carrying out experiments

with the real system.
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• The mathematical solutions can be reproduced efficiently.

• Mathematical models are well scalable.

In general and with respect to the field of data mining, the possibility of using only data-driven

models or so-called hybrid models combining mathematical/physical models with data-driven

models is also worth mentioning. [9], [10], [11], [12]

III. Modeling safety-critical driving scenarios
In the real world, there are many different types of driving scenarios which are critical regarding

safety aspects or endanger people’s lives. In general, they can be grouped into the following

categories:

• Emergency braking, in either direction of travel (driving forwards or backwards).

• Passing, with or without oncoming traffic.

• Turning with traffic close behind or on the side or in the oncoming direction.

• Leaving the driving lane abruptly or colliding with an obstacle (for example another traffic

participant).

• Losing control of the vehicle due to challenging road surfaces, weather conditions, lighting

conditions, limited driving ability, or other disruptive factors.

In the following, three of these safety-critical driving scenarios will be modeled. On the one hand,

this is to have an abstract but physically plausible and interpretable build-up of the underlying

scenarios based on mathematical and kinematical equations. And on the other hand, it is to provide

the corresponding synthesized time series data describing the vehicle’s movements, for the purpose

of training and validation machine learning algorithms within autonomous cars. Emergency braking,

turning, and overtaking in the presence of opposing traffic will be the scenarios modeled and studied.

A. Emergency braking
Emergency braking is one of the most safety-critical driving scenarios. It is characterized by a

strong braking phase implemented by the vehicle’s driver. Furthermore, this challenging situation

is mostly hard to control completely because of the short time to react. The main objective of

emergency braking is to prevent a collision with an obstacle in the direction of driving. Moreover,

the other participants involved in this situation shall also not be endangered. Fortunately, more and

more new vehicle models are equipped with an Automated Emergency Braking (AEB) system [13].

Reaction time
Regardless of the driving situation, the measurement of reaction times is an important method

for experimental psychology to examine human information processing. It is assumed that the

time required for the processing of stimuli can be used to infer the processes required for that

processing [14]. In [15], the reaction time is described as the time that elapses between the start of

the presentation of the stimulus and the occurrence of the stimulus-related behavioural response

of the individual. In addition, the response time can be determined purely psychologically and

physiologically [16]. For decades, the driver’s reaction time has been seen as an important factor in

traffic-related driving scenarios, such as emergency braking, or in the context of the avoidance of

traffic accidents (accident reconstructions) [17]. There are different definitions of reaction time: In

[18] describes reaction time as the time elapsed between the detection of a certain traffic situation

3



(signal, danger, etc.) and the reaction intended to deal with it (e. g. the actuation of the steering

wheel or the brake pedal). It is also defined as the time it takes for the driver to recognize the

danger and give the command to brake [19]. In [20], reaction time is defined as the time span

that is measured between a signal and the reaction of a test person following this signal. It is also

referred to, [14], as the time that elapses between the onset of a stimulus and the reaction, that is

to say the time between the lighting up of the brake lights of one vehicle and pulling the foot off

of the accelerator pedal by the driver of the vehicle behind. In [14], reaction times are subdivided

into two types: simple reaction time, when there is only one option for the reaction, and election

reaction time, when the test subject has to choose between two or more alternative reactions. In [21]

there is an alternative division of the reaction time, into the time for the mental processing of the

information, the time for the motor reaction, and the reaction time of the vehicle. It is emphasized in

[22] that the reaction time begins with the detection of the hazard.

The reaction time does not have constant value, but is rather subject to intrapersonal and

interpersonal fluctuations [23]. For this reason, canonical or generalized determinations of reaction

times are not sufficient [24]. The factors influencing the reaction time can be further specified.

The reaction time depends on the criticality of the driving situation [24], the assessment of the

driving situation [15] [17], the age of the driver [19], the physical or mental state of the driver [19],

the driver’s attention [15], the visibility [15], and the driver’s learning curve [15]. With regard

to the criticality of the driving scenario, at least two reaction times must be distinguished in road

traffic: driver reactions in normal road traffic (reaction to traffic lights, traffic signs, changes in road

curvature, etc.) and driver reactions to suddenly occurring, possibly life-threatening dangers [25].

The reaction time is comprised of several partial times. It can be divided into the basic reaction

time, the moving time, and the response time [22]. The basic reaction time includes the time from

the detection and assessment of the traffic situation to the decision to brake [19]. The moving time

is understood to be the time that the driver needs to move the foot from the accelerator pedal to the

brake pedal [19]. During this time, the vehicle continues to move with constant speed. For technical

reasons, however, brakes require a certain amount of time from touching the brake pedal until the

brakes respond (maximum pressure build-up). This time is called the response time or braking

barrier phase. The response time in turn is made up of the application time followed by the swell

time [19] [22]. The application time begins with the actuation of the brake pedal and goes until

the brake pads are applied to the brake disc or brake drum. The swell time of the brake system is

understood to be the time that elapses from the beginning of the increase of pressure until the full

brake pressure is reached [19]. Another time is called the focusing time. It precedes the reaction

time and corresponds to the time between peripheral perception and fixation on the object. This

time can be neglected if the dangerous object is in the central visual field (foveal vision) or within

five degrees of the viewing angle [22]. The concatenation of the individual parts of the time are

illustrated as a sequence in Figure 2.

Because the reaction time has a variable size and is in general difficult to determine, it is technically

approximated by a suitable distribution function. Reaction times have certain characteristics. The

distributions are basically right-skewed [21] [26] [27] and have exponential elements (due to the

exponential behaviour of the peaks of the neurons in the human brain) [26]. Furthermore, the

standard deviation increases approximately linearly with the arithmetic mean [27]. In general, a

model with at least three parameters is required to describe the reaction data satisfactorily [28]. The

intention is to describe at least the position of the maximum, the curvature in the area of the maximum,

and the relative slopes to the left and right of the maximum of the density function [25]. Basically,
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Fig. 2 Concatenation of the reaction time and appended time phases

the reaction time cannot be adequately represented by a normal distribution [27]. As alternatives,

other distribution functions are more suitable for this. These include in particular: Exp-Gaussian,

Log-Normal, Shifted Log-Normal, (Shifted) Wald / Inverse Gaussian, Wiener / Decision Diffusion,

Linear Ballistic Accumulator, Shifted Weibull, and Shifted Gamma. The so-called 2AFC models

(two-alternative forced choice models) have been mentioned as advantageous in this context [26]

[27]. A 2AFC implementation is given with the Ratcliff Diffusion Model [26].

The time-shifted gamma distribution can approximate reaction times very well. This is also

mentioned in [23] and [28]. The size of the gamma distribution is explicitly linked to the moments of

the underlying data [25]. The minimax method can also be used as an experimental approach for the

determination of the type of distribution [25]. One disadvantage is the lack of ability to interpret the

sizes of the gamma distribution of the response times [27]. However, if only the calculated values

from the distribution or density function are necessary for the further applications, then this point

can be neglected. A physical schema of an emergency braking maneuver is illustrated in Figure 3.

Fig. 3 Emergency braking maneuver

For simplicity, the lateral position in the driving direction 𝑦𝐺 can be set to the lane width 𝐵 in

one direction (straight line horizontal movement). The overall (braking) distance 𝑥𝐺 consists of the

individual distances during the reaction time 𝑡𝑅, moving time 𝑡𝑆, and braking time 𝑡𝐵 [22].

𝑥𝐺 = 𝑥𝑅 + 𝑥𝑆 + 𝑥𝐵 (1)

= 𝑣∗0 𝑡𝐺 −
1

6
𝑎∗𝐵 𝑡

2
𝑆 −

1

2
𝑎∗𝐵 𝑡𝑆 𝑡𝐵 −

1

2
𝑎∗𝐵 𝑡

2
𝐵 (2)
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The parameters 𝛼1 and 𝛼2 are introduced to vary the synthesized data according to the absolute

values of the initial velocity 𝑣0 and deceleration 𝑎𝐵. In more detail, 𝛼1 and 𝛼2 are much smaller

than 𝑣0 and 𝑎𝐵 to limit the data variations to lie within plausible physical limits.

𝑣∗0 = 𝑣0 + 𝛼1, 𝛼1 ∈ R0 ∧ |𝛼1 | � |𝑣0 | (3)

𝑎∗𝐵 = 𝑎𝐵 + 𝛼2, 𝛼2 ∈ R0 ∧ |𝛼2 | � |𝑎𝐵 | (4)

The total time of the emergency braking is defined by

𝑡𝐺 = 𝑡𝑅 + 𝑡𝑆 + 𝑡𝐵 = 𝑡𝑅 + 𝑡𝑆 +
𝑣∗

0

𝑎∗𝐵
(5)

The moving time 𝑡𝑆 depends on the construction of the brake, the condition of the road, and the way

in which the brake was actuated. For passenger cars, this time varies from 0.2 up to 0.4 seconds [20].

The reaction time 𝑡𝑅 is modeled as a time-shifted Gamma distribution due to the already

described advantages and neglectable disadvantage regarding interpretability in this case. This

distribution depends on the shape parameter 𝑎 > 0 and scale parameter 𝑏 > 0 [29] [30].

𝑡𝑅 := 𝐹−1( 𝑝 | 𝑎, 𝑏 ) = {𝑡𝑅 : 𝐹 ( 𝑡𝑅 | 𝑎, 𝑏 ) = 𝑝} (6)

𝑝 := 𝐹 ( 𝑡𝑅 | 𝑎, 𝑏 ) =
1

𝑏𝑎 Γ(𝑎)

∫ 𝑡𝑅

0

𝑡𝑎−1 𝑒−𝑡/𝑏 𝑑𝑡 (7)

Γ(𝑎) =
∫ ∞

0

𝑒−𝑡 𝑡𝑎−1 𝑑𝑡 (8)

The determination of the complete velocity profile can also be split into the phases of the reaction

time 𝑡𝑅, moving time 𝑡𝑆, and braking time 𝑡𝐵.

𝑣(𝑡) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑣∗
0
, 0 ≤ 𝑡 ≤ 𝑡𝑅

𝑣∗
0
−

1

2
𝑎∗𝐵 𝑡𝑆, 𝑡𝑅 < 𝑡 ≤ 𝑡𝑅 + 𝑡𝑆

𝑣∗
0
−

1

2
𝑎∗𝐵 𝑡𝑆 − 𝑎∗𝐵 𝑡𝐵, 𝑡𝑅 + 𝑡𝑆 < 𝑡 ≤ 𝑡𝐺

(9)

The distance 𝑉 between the vehicle which is braking and the obstacle must be maintained to

fulfill the safety aspects. It is the sum of the overall braking distance 𝑥𝐺 and a further safety margin

width Θ. Finally, the emergency braking maneuver can be classified as safety-critical, indicated

by 𝑉𝐶 , in case Θ is not maintained at least at its minimum Θ𝑚𝑖𝑛. Otherwise, a non safety-critical

situation is occurring, indicated by 𝑉𝑆.

𝑉 := 𝑥𝐺 + Θ

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑉 → 𝑉𝑆, Θ ≥ Θ𝑚𝑖𝑛

𝑉 → 𝑉𝐶, Θ < Θ𝑚𝑖𝑛

(10)

It has to be pointed out that further emergency braking formulations depending on the physical

sizes acting as input values are described in [22]. In [31] there is an alternative mathematical

modeling of changes in the speed of vehicles under emergency braking. For applications such as the

design of emergency braking controls, the underlying and detailed model should also consider high

values for the dynamic tire-road friction [32] [33].
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B. Turning maneuver with opposing traffic
A turning maneuver of a vehicle is an ordinary and often occurring driving scenario in the real

world. It is more challenging and dangerous when additional participants are involved. There are

many different variations of the turning scenario. Here, a turning maneuver with a laterally shifted

opposing vehicle is considered. The underlying schema of this scenario is illustrated in more detail

in Figure 4.

Fig. 4 Turning maneuver with opposing traffic

The overall time for the vehicle to perform the turning process is defined by 𝑡𝐺 . Here, it is

determined by the sum of the times to decelerate by 𝑎𝐵 to a proper velocity 𝑣2 for the turning (𝑡1), as

well as by the turning time itself (𝑡2). The turning sequence can be modeled by a quadrant defined

by its arc length 𝑏 =
𝜋

2
𝑅 [34].

𝑡𝐺 = 𝑡1 + 𝑡2 =
𝑣∗

1
− 𝑣2

𝑎∗𝐵
+
𝜋 𝑅

2 𝑣2

(11)

The parameters 𝛽1 and 𝛽2 are introduced to further vary the synthesized data, by serving as modifiers

of the initial velocity 𝑣1 and 𝑎𝐵. The values of 𝛽1 and 𝛽2 are much smaller than their referencing

values 𝑣1 and 𝑎𝐵.

𝑣∗1 = 𝑣1 + 𝛽1, 𝛽1 ∈ R0 ∧ |𝛽1 | � |𝑣1 | (12)

𝑎∗𝐵 = 𝑎𝐵 + 𝛽2, 𝛽2 ∈ R0 ∧ |𝛽2 | � |𝑎𝐵 | (13)

The overall distance to be driven by the vehicle performing the turn is the sum of both sub-

distances 𝑥1 and 𝑥2. The parameter 𝑅 is the turning radius, 𝐵 is the lane width of one driving

direction, and Ω ∈ [1.5𝜋; 2𝜋] is the interval of possible radian values for the quadrant considered.
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Here, it is divided into the horizontal and vertical coordinates referencing a 2-dimensional plane.

𝑥𝐺 = 𝑥1 + 𝑥2 = 2

(
𝑣∗1 𝑡1 −

1

2
𝑎∗𝐵 𝑡

2
1

)
+ 𝑅 cos(Ω) (14)

𝑦𝐺 = 𝑦1 + 𝑦2 = 𝐵 + 𝑅 (1 + sin(Ω)) (15)

The determination of the overall velocity profile of the vehicle performing the turn can be split

into the reaction phase and the braking period itself. It depends also on the overall time 𝑡𝐺 for this

maneuver.

𝑣(𝑡) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑣∗

1
− 𝑎∗𝐵 𝑡, 0 ≤ 𝑡 ≤ 𝑡1

𝑣2, 𝑡1 < 𝑡 ≤ 𝑡𝐺

(16)

The distance which the opposing vehicle has traveled is set to the distance which the turning

vehicle has performed until it reaches the point defined by the index 𝑘 ∈ R+ on the quadrant where

a collision could occur [35]. This constraint was defined to enable the possibility to building a

safety-critical scenario in this regard.

𝑥3 :=
∫ 𝑘

0

√

𝑥𝐺,𝑘 (𝑡)2 + 
𝑦𝐺,𝑘 (𝑡)2 ∧



𝑦𝐺,𝑘



 ≈ 𝑅 (17)

The opposing vehicle is modeled as driving with constant speed 𝑣3. This velocity depends on

the traveled distance 𝑥3 and the time 𝑡3

𝑣3 =
𝑥3

𝑡3
(18)

Here, 𝑡3 is the same time when the turning vehicle reaches the critical point with index 𝑘 .

𝑡3 := 𝑡𝐺,𝑘 ∧


𝑦𝐺,𝑘



 ≈ 𝑅 (19)

The distance 𝑉 is again to be taken into consideration for safety aspects. Here, it can be set to

the sum of 𝑥3 and a further safety margin width Θ. So, the turning maneuver can be classified as

safety-critical 𝑉𝐶 in case Θ is not maintained at least at its minimum Θ𝑚𝑖𝑛. Otherwise, it is a non

safety-critical scenario, which is indicated by 𝑉𝑆.

𝑉 := 𝑥3 + Θ

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑉 → 𝑉𝑆, Θ ≥ Θ𝑚𝑖𝑛

𝑉 → 𝑉𝐶, Θ < Θ𝑚𝑖𝑛

(20)

An alternative model for describing the vehicle’s movement during this driving scenario is

illustrated in [22], but only calculable numerically.
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Fig. 5 Passing with opposing traffic

C. Passing in the presence of opposing traffic
One of the most dangerous driving scenarios, with many traffic fatalities per year, is overtaking

in the presence of opposing traffic. Therefore, it is modeled in the following. In more detail, a

sequence with the given physical properties is illustrated in Figure 5. The distance traveled for a

lane change to the opposing lane is defined by 𝑥𝐴 and vice versa by 𝑥𝐸 . A simplification is done by

an equalization of both distances accordingly. These distances are determined by the time 𝑡𝐸 during

the sequence of 𝑥𝐴 or 𝑥𝐸 and the velocity difference of the overtaking and overtaken vehicle.

𝑥𝐴 := 𝑥𝐸 = 𝑡𝐸 (𝑣2 − 𝑣1) (21)

The time 𝑡𝐸 can be estimated, depending on the lane width 𝐵 for one direction and the lateral

acceleration 𝑎𝑞 of the overtaking vehicle. The factor 𝐾 is an empirically determined constant. [22]

𝑡𝐸 ≈ 𝐾

√
𝐵

𝑎𝑞
= 2, 67

√
𝐵

𝑎𝑞
(22)

The time for this overtaking is defined by 𝑡𝑂𝑣. It depends again on the above named velocity

difference as well as on the length of the overtaking vehicle 𝐿1, that of the vehicle overtaken 𝐿2, and

the widths 𝑎1 and 𝑎2 of the safety margins.

𝑡𝑂𝑣 =
𝑎1 + 𝐿1 + 𝑎2 + 𝐿2

𝑣2 − 𝑣1

(23)

The velocity of the opposing vehicle 𝑣3 is considered to be constant. With the use of the three

velocities 𝑣1, 𝑣2 and 𝑣3 as well as 𝑡𝑂𝑣 , the corresponding distances 𝑥1, 𝑥𝑂𝑣 and 𝑥𝐺 can be calculated.

The distance 𝑥𝑃 is less than 𝑥𝑂𝑣 . In more detail, it is the difference of 𝑥𝑂𝑣 and the distance between

𝑥𝐴 and 𝑥𝐸 .

𝑥1 = 𝑣1 𝑡𝑂𝑣 (24)

𝑥𝑂𝑣 = 𝑣2 𝑡𝑂𝑣 (25)

𝑥𝐺 = 𝑣3 𝑡𝑂𝑣 (26)

𝑥𝑃 = 𝑥𝑂𝑣 − 𝑥𝐴 − 𝑥𝐸 (27)
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The complete trajectory of the overtaking vehicle is modeled by a preferred oblique sine line.

[22] The parameters (𝛾1, 𝛾2) ∈ R0 ∧ |𝛾1 | � 1 ∧ |𝛾2 | � 1 vary the slopes of the lane change

sequences slightly to provide synthesized data with relatively small variations again. The different

distance boundaries are defined by 𝐶1 := [0 ; 𝑥𝐴], 𝐶2 := (𝑥𝐴 ; 𝑥𝐴 + 𝑥𝑃] and 𝐶3 := (𝑥𝐴 + 𝑥𝑃 ; 𝑥𝑂𝑣].

Λ :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝐵 𝑥

𝑥𝐴
−
𝐵 (1 + 𝛾1)

2𝜋
sin

(
2𝜋𝑥

𝑥𝐴

)
, ∀𝐶1

𝐵, ∀𝐶2

−
𝐵 𝑥

𝑥𝐸
+
𝐵 (1 + 𝛾2)

2𝜋
sin

(
2𝜋𝑥

𝑥𝐸

)
+ 𝐵, ∀𝐶3

(28)

The overall time 𝑡2 for the overtaking vehicle to cover the trajectory Λ depends on the length

𝐿 (Λ) of the trajectory as well as on the velocity [35] of the vehicle.

𝑡2 =
𝐿 (Λ)
𝑣2

=
1

𝑣2

∫ 𝑥𝑂𝑣

0

√
1 + Λ2 𝑑𝑥 (29)

Again, the size 𝑉 has to be taken into consideration for reasons of safety. Here, it can be set to

the sum of 𝑥𝑂𝑣, 𝑥𝐺 and a further safety margin Θ. So, the overtaking procedure can be classified

as safety-critical 𝑉𝐶 in case Θ is not maintained at least at its minimum Θ𝑚𝑖𝑛. Otherwise, a non

safety-critical situation occurs, which is then indicated by 𝑉𝑆.

𝑉 := 𝑥𝑂𝑣 + 𝑥𝐺 + Θ

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑉 → 𝑉𝑆, Θ ≥ Θ𝑚𝑖𝑛

𝑉 → 𝑉𝐶, Θ < Θ𝑚𝑖𝑛

(30)

To point out the effectiveness of the models described in this section, their benefits are described in

the following:

• The level of detail of the model’s physics, by using kinematic equations, is well suited to

providing appropriate synthesized data for the underlying use case.

• Similar designs for thinking of the models described with correspondingly high interpretability

and justified by using the same fundamental kinematic sizes, consistent nomenclature,

and logical splitting into safety-critical and non safety-critical driving scenarios with the

employment of a safety margin.

• Good interpretability and modularization of the driving scenarios modeled, which is achieved

by step-wise concatenating the individual driving sequences and their defined functions.

• The possibility of varying the data synthesized by considering different parameters dependent

on the vehicle-dependent physical sizes.

Furthermore, it is possible to combine the safety width 𝑉 with so-called criticality metrics like

Time-to-Collision (TTC), Time-to-React (TTR), Required Deceleration (𝑎𝑟𝑒𝑞), Distance-of-Closest-

Encounter (DCE), Time-to-Closest-Encounter (TTCE), and Worst-Time-to-Collision (WTTC). [36]

In this paper, the movement of the vehicle is modeled using kinematic equations. In general,

alternative vehicle model approaches can also be considered, such as multi-body vehicle models

[37] [38], kinematic/dynamic single-track and two-track modeling [38] [39], spatial overall vehicle

modeling [38], vehicle longitudinal models [40], parametric vehicle models [41], data-driven vehicle

modeling [42], cellular automata [43], and bond graphs [44].
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IV. Conclusion
The development of autonomous driving is an important topic for the automotive sector at

the present moment as well as in the future. To save more people’s lives during safety-critical

driving scenarios, software algorithms as part of the development of autonomous cars must be tested

precisely. Although such driving scenarios are critical, the underlying data are rarely recorded. As a

result, the corresponding machine learning algorithms must be trained and validated without the

presence of real measurements in high quantity. This publication has emphasized the effectiveness

of using kinematic models describing the vehicle’s movement during critical driving scenarios,

as well as providing appropriate synthesized data for the training and validation of such software

solutions. In this context, three of the most important safety-critical driving scenarios, namely

emergency braking, turning, and overtaking in the presence of opposing traffic, have been illustrated

and modeled.
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