

Inhalt

Ein	leitur	ng	7
Teil	A:	Grundlagen	15
1 Т	Cemp	eraturmodell	15
	1.1	Thermisch dünnwandiges Modell	16
	1.2	Randbedingungen	19
	1.3	Näherungsdifferentialgleichung	20
	1.4	Analytische Lösungen	23
	1.4.	1 Konvektive Wärmeübertragung	23
	1.4.	2 Wärmeübertragung durch Wärmestrahlung	28
	1.4.	3 Wärmeübertragung durch Konvektion und Wärmestrahlung	31
	1.4.	3.1 Geschlossene Lösungsgleichung	31
	1.4.	3.2 Lösungsverfahren für iterative Berechnung	35
	1.4.	4 Temperatur- oder zeitabhängige Einflussgrößen	39
2 I	Diffus	sionsmodell und Reaktionskinetik	40
	2.1	Diffusionstechnisch dünnwandiges Modell	41
	2.2	Reaktionskinetische Vergleichbarkeit	44
	2.3	Rekristallisation und Kornwachstum	45
	2.4	Reaktionskinetische Modellierung von Werkstoffeigenschaften.	46
	2.5	Zeit-Temperatur-Unität	49

Т	eil B:	Thermisch aktivierte und reaktionskinetisch determinierte Anwendungen	53
3	Wärr	metechnisch-reaktionskinetische Modellierung zum Schweißen	53
	3.1	Phasenumwandlung und Wärmetönung	55
	3.2	Modellgleichungen	56
	3.3	Reaktionskinetische Auswertung	60
4		metechnisch-reaktionskinetische Modellierung bei idationsprozessen	66
5		tionskinetische Beschreibung mechanischer Werkstoffeigenschafte Abhängigkeit von der Glühbehandlung	
6	_	oiel zur Erwärmung in einem Luftumwälzofen unter rücksichtigung von Konvektion und Wärmestrahlung	77
7	Phys	ikalische Stoffwerte abhängig von der Umwandlungskinetik	82
8	Sinte	rkinetik	85
9	Zur b	bedingten Austauschbarkeit von Temperatur und Zeit	90
10	Diff	usion zwischen zwei sich in Kontakt befindlichen Körpern	97
11	Diff	usion von Oberflächenschichten	03
12	Lok	ale Wärmebehandlung - Presshärten 1	14
13	Elek	ktrisches Durchlauf-Widerstandsglühen – Ziehglühen 1	18
14	Eige	enschaftsoptimierung von niedriglegierten Kupferlegierungen 1	28
15		enhochdruckumformen von Kupfer und Simulation der thermisch tivierten Entfestigung	
R	esüme	ee	34
Q	uellen		36
A	nhang	; 1:	39