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Preface

In this work, based mainly on my Ph.D. thesis, lagrangian singulari-
ties are studied. This topic lies on the border of different branches of
mathematics, like singularity theory and algebraic geometry, symplectic
geometry, mathematical physics, algebraic analysis etc. The main goal is
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tigate its relationship to D-module theory. Algorithms for computations
of deformation spaces are derived and applied to concrete examples.

It is a great pleasure for me to acknowledge the help I received from
different people during the work on my thesis. In the first place, I would
like to express my deep gratitude to my advisor Duco van Straten for his
constant support which began a long time before I started this work. His
way to do and explain mathematics very much impressed and influenced
me all over the years. I am particular grateful to him for bringing the
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kindly accepted to undertake the adventure of co-directing my thesis and
whose interest in my work as well as his explanations on D-modules were
of great help during my stay in Paris.

It is tempting but hopeless to try to list all the people who con-
tributed in some way to this thesis. To name only a few, I thank Thorsten
Warmt for sharing my enthusiasm for mathematics over the last eight
years. I also thank Christian van Enckevort, Konrad Möhring and Oliver
Labs for discussions on various mathematical subjects. Many thanks go
to Claus Hertling for explaining me at different occasions his work on
Frobenius manifolds and the relationship to lagrangian singularities. It



is a pleasure to thank Mauricio Garay for his interest in lagrangian sin-
gularities and for many fruitful discussion on the subject, some of which
are at the origin of results contained in this thesis.

I would like to thank Paul Seidel and Gert-Martin Greuel for having
been the referees of this thesis and for their useful remarks. I thank
Claude Roger for his willingness to participate in the jury of the defense.
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Introduction

Lagrangian singularities first appeared in the work of Arnold and his
school around 1980. Arnold recognized their importance in relation with
problems from mathematical physics, in particular, variational problems
with constraints ([Arn82]). Most prominently, the so-called obstacle
problem leads to the open swallowtail, a singular subvariety in a cer-
tain space of polynomials in one variable of fixed degree, which comes
equipped with a natural symplectic form. Some years later, Givental
studied immersions of lagrangian surfaces in four space ([Giv86]), also
called isotropic mappings and discovered a generic mapping the image
of which is called open Whitney umbrella. More recently, lagrangian
subvarieties associated to any Frobenius manifold have been studied ex-
tensively by Hertling [Her02]. Singular subspaces of symplectic manifolds
also arise in algebraic analysis, the characteristic variety of a holonomic
D-module is a lagrangian subvariety. These few examples show that
Lagrangian singularities occur at rather different places in mathemat-
ics, as subspaces of holomorphic symplectic manifolds as well as in the
C∞-setting. There are also classes of lagrangian submanifolds involving
real and complex structures, namely the so-called special lagrangians are
subspaces of Calabi-Yau manifolds such that the Kähler form as well as
the imaginary part of the holomorphic form of maximal degree vanish
on them. Singularities of such special lagrangians play an important
role in the (conjectural) version of mirror symmetry as developed by
Strominger, Yau and Zaslow (see, e.g., [Joy00]).

The central topic of this thesis is the problem how lagrangian sin-
gularities behave under deformations. Partial aspects of this question
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can already be found in the work of Givental ([Giv88]). However, the
deformations that are considered in that paper are only perturbations
of the symplectic structure which fixes the lagrangian subspace. In or-
der to take into account deformations of the space itself, we are led to
use rather sophisticated tools from abstract deformation theory, which
have been developed since the sixties (quite independently from classical
singularity theory) by Grothendieck, Schlessinger, Illusie, Artin, Deligne
and others. In this approach, the main idea is to associate to any object
that one wants to deform a functor on a certain category (which is the
category of base spaces of the families under consideration) and to study
its representability, at least in a somewhat weaker sense (existence of
a so-called “hull”). The classical notion of semi-universal deformations
(e.g., for functions with isolated critical points) is a special case of this
more general principle.

To make this deformation theory program work, the first step is to
define the appropriate functor. Hence we need to know what exactly is
meant by a Lagrangian deformation. We will give in the sequel an infor-
mal definition, postponing the exact formulation to the second chapter
(definition 2.4 on page 54). Given any germ (L, 0) ⊂ (M, 0) of a reduced
(complex, say) analytic subspace L inside a (holomorphic) symplectic
manifold M with defining ideal I ⊂ OM,0, the question arises how to
detect whether L is lagrangian only in terms of the ideal I. It turns out
that a necessary condition is that I is stable under the Poisson bracket,
i.e., {I, I} ⊂ I. Such ideals are called involutive. In addition, the space
L must have the right dimension, i.e., half of the dimension of the man-
ifold M . If we want to deform this situation, the first thing to realize is
that the ambient manifold should deform trivially and that the deformed
space LS will be embedded in M × S, where S is the parameter space.
The condition to impose is that for each s ∈ S, the fibre Ls ⊂ M × {s}
is a lagrangian subvariety. In terms of the defining ideal, this simply
means that if IS ⊂ OM×S,0 is the deformed ideal (the ideal defining LS
in M × S), we require that {IS , IS} ⊂ IS . Here the bracket is a bracket
on the product M ×S, this is no longer a symplectic but a Poisson man-
ifold (i.e, the bracket is degenerate). Again, we need a condition on the
dimension of the fibres. This is automatic if we require the deformation
to be flat as usual for singularities. Then all fibres will have the same
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dimension, namely, half of the dimension of M . Given a deformation
of LS ⊂ M × S � S, the natural question arises whether it can be
trivialized. In the case of flat deformations of (arbitrary) singularities,
a trivialization is given by a vector field of the ambient manifold. This
is still true for a lagrangian deformation, however, as we are working
in the symplectic category, this vector field must be hamiltonian. The
description just given already suffices to define our lagrangian deforma-
tion functor, namely, it is a functor from an appropriate category of
base spaces into the category of sets which associates to a space S the
set of isomorphism classes of lagrangian deformations over S modulo
isomorphisms coming from Hamiltonian vector fields.

Given a deformation functor, there are in general two things one is
interested in. The first one is the existence of a hull (a formally semi-
universal deformation). This is a deformation over a space Spec(R)
where R is a quotient of a formal power series ring. One of the funda-
mental results of Schlessinger is that such a hull exists if the space of
deformations over Spec(k[ε]/ε2) (called the tangent space of the functor)
is a finite-dimensional vector space over k. The second point is to study
the structure of the hull R, in particular, to know whether it is smooth
or not. This is known as the problem of obstructions, namely, it con-
sists in detecting whether for a deformation over an Artin space Spec(A)
and a surjection B � A there is a deformation over Spec(B) inducing
the given deformation over A. The most conceptual way to treat these
two problems together is to find what is called a “controlling differen-
tial graded Lie algebra” (L, d, [ , ]). This roughly means that the space
of deformations over a ring A is identified with the subset of L1 ⊗ mA

consisting of solutions of the following equation, called Maurer-Cartan
equation:

dη +
1
2
[η, η] = 0

In particular, this implies that the first cohomologyH1(L) is the tangent
space of the functor and H2(L) contains in some sense “all” obstructions.

One case where this theory has been successfully applied is the prob-
lem of flat deformations of a singularity (X, 0), that is, flat deformations
of the analytic algebra OX,0 (there is of course a corresponding the-
ory in the algebraic category). Here a dg-Lie algebra, constructed from
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the so-called (analytic) cotangent complex exists. It is a complex of
OX,0-modules together with a graded Lie bracket which makes it into a
differential graded Lie algebra. Very roughly, it is defined as the complex
of graded derivations of a special resolution of OX (called the resolvent)
where the bracket is the commutator of derivations and the differential
is the bracket with the differential of the resolvent (which is a derivation
of degree one).

For lagrangian singularities, the situation is more difficult, as one has
to take into account both the flatness and the lagrangian condition. We
construct in this work for any lagrangian singularity (L, 0) ⊂ (M, 0) a
complex of OL-modules (denoted by C•L,0) together with a C-linear dif-
ferential whose first cohomology is identified with the tangent space of
the lagrangian deformation functor. The second cohomology contains
information on the obstruction theory of (L, 0). However, this complex
does not control the deformation problem in the above sense, the main
reason is that it is not equipped with a bracket making it into a differ-
ential graded Lie algebra. It should be seen as an approximation of an
object still to be found.

The complex C•L,0 turns out to be related to the theory of differen-
tial modules. This somewhat surprising fact can be explained by the
formalism of Lie-algebroids. A Lie algebroid on a space X is a module
over OX together with a Lie algebra structure, such that elements act as
derivations of OX . For any lagrangian singularity, the conormal module
I/I2 has a natural structure of a Lie algebroid, where the Lie bracket
and the action on OL,0 is essentially given by the Poisson bracket. There
is a natural construction of a (non-commutative) ring of differential op-
erators from a given Lie algebroid. This construction generalizes the
usual ring of differential operators, which comes in the same way from
the tangent sheaf of a smooth variety X viewed as a (rather trivial) Lie
algebroid. The complex C•L,0 is the analogue of the de Rham complex
in D-module theory (therefore we call it lagrangian de Rham complex).
The second main result of this work is a version of Kashiwara’s con-
structibility theorem for the lagrangian de Rham complex. In ordinary
D-modules theory, this result states that for a holonomic DX -module
M, the cohomology of the de Rham complex DR•(M,OX) form con-
structible sheaves of finite-dimensional vector spaces on X . We prove
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a similar result for the complex C•L under a geometric condition on the
lagrangian variety L. This implies in particular by using Schlessinger’s
theorem the existence of a semi-universal deformation (in the formal
sense) for lagrangian singularities satisfying this condition. The relation
to the de Rham complex of the space L also yields a sort of µ = τ
theorem for smoothable lagrangian singularities.

A major problem concerning the deformation spaces of lagrangian
singularities was to know how to calculate them effectively. In fact, the
description of the tangent space of the lagrangian deformation functor
as the first cohomology of C•L,0 is a priori not sufficient to compute this
space. The main difficulty lies in the non-linearity of the differential.
Hopefully, a direct calculation might be possible using the differential
structure and the theory of standard bases over general non-commutative
algebras. This subject is however still in its infancy. Meanwhile, we can
offer an algorithm for reduced quasi-homogenous lagrangian surfaces. In
that case the computation simplifies to the calculation of the cohomol-
ogy of a smaller complex, which is supported on the singular locus of
L. Then the differential structure is much easier to understand, it re-
duces essentially to a vector bundle over the complex line together with
a meromorphic connection. Classical results from the theory of ordinary
differential equations allow us to calculate the space of horizontal sec-
tions of this bundle, which gives the cohomology we are interested in.
As a byproduct, we obtain a set of rational numbers, the so called spec-
tral numbers which are invariants attached to the lagrangian surface.
They are in some sense an analogue to the spectrum of a hypersurface
singularity with isolated critical points, which is an important ingredi-
ent to define a mixed Hodge structure on the cohomology of the Milnor
fibre of the singularity. Quite surprisingly, our lagrangian spectral num-
bers share a symmetry property with the classical spectrum, at least in
all examples we have calculated. For the spectrum of a function with
isolated critical points, the symmetry is a deep result using K. Saito’s
higher residue pairings. For the lagrangian spectrum, the symmetry has
not yet been shown. We explain in the text some ideas and speculations
which might lead to a rigorous proof.

There is another deformation problem related to lagrangian singulari-
ties, namely, deformations of so-called isotropic mappings. Suppose that
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there is a map from a smooth variety into a symplectic manifold such
that the image is a lagrangian subvariety. Then one might ask about the
deformations of this map requiring that the image stays lagrangian. This
problem turns out to be more difficult to attack than deformations of
lagrangian subvarieties, in fact, there is not yet a systematic way to com-
pute these deformation spaces. Nevertheless, we can calculate them for
simple examples, like plane curves and isotropic mappings from a plane
into four space of rank one. In general, isotropic mappings of corank
one are of rather special type, e.g., their deformation functor is smooth,
which is not true in general. The calculation of the infinitesimal defor-
mation space of isotropic mappings from a plane into four space shows
an astonishing relation between the dimension of this space and other
(more classical) invariants attached to the map. We conjecture that this
relation holds true in general.

We will give in the following paragraphs a short overview on the
content of this thesis. The first chapter describes in some detail the
geometry of different classes of lagrangian singularities. Apart from the
examples mentioned above we discuss generating families, integrable sys-
tems, the µ/2-stratum, spectral covers of Frobenius manifolds and sin-
gularities of special lagrangian varieties. We present for each of these
classes one example as concrete as possible (mainly the case of a surface
in four-space) by calculating a set of defining equations f1, . . . , fk, the
commutator {fi, fj} of these equations, the structure of the singular lo-
cus etc. Despite the fact that these examples are well-known, this type of
calculations (using computer algebra) is difficult to find in the literature.

The second chapter introduces the problem of deformations in the la-
grangian context by first studying two very simple examples, which are
in some sense opposite to each other: smooth real lagrangian submani-
folds of C∞-manifolds and germs of plane curves. Here it is elementary
to calculate infinitesimal deformation spaces, these are classical results.
Then we introduce a quite general deformation functor, associated to
any mapping i : X → M from an analytic space to a symplectic mani-
fold such that i∗ω vanishes. For a lagrangian subvariety, one can take i
to be the inclusion to obtain the functor mentioned above. On the other
hand, if X is smooth and i arbitrary then we get the functor of defor-
mations of an isotropic mapping. These two cases are treated in detail



Introduction 7

in the following two chapters. The third one starts by introducing Lie
algebroids and modules over them. We define the de Rham complex of a
module over a Lie algebroid. Then we prove that the conormal module
of a lagrangian subvariety L ⊂ M has the structure of a Lie algebroid.
We study simple properties of the lagrangian de Rham complex C•L, in
particular, we compare it to several complexes of differential forms on
the variety L. We introduce the whole theory directly in a relative set-
ting, that is, we define Lie algebroids over morphisms of analytic spaces.
This situation arises naturally by considering a family L ↪→M ×S � S
of lagrangian varieties over a base S. The next step is to prove that the
first cohomology of the lagrangian de Rham complex is isomorphic to the
tangent space of the lagrangian deformation functor (again, this is done
in a relative setting, considering infinitesimal deformations of the fam-
ily). We state and show a variant of a T 1-lifting theorem for lagrangian
singularities which gives the smoothness of the deformation functors in
some cases. Finally, we discuss a slightly modified deformation problem
concerning integrable systems. Here we have a more complete result,
we can construct from the lagrangian de Rham complex a differential
graded Lie algebra controlling deformations of integrable systems.

The second part of the third chapter contains the proof of the con-
structibility theorem. It follows the proof of Kashiwara’s theorem for
D-modules, namely, we first show that the cohomology sheaves of the
complex C•L are locally constant on strata consisting of points of L with
constant embedding dimension. The second step is to show that at each
point p ∈ L, the stalk of a cohomology sheaf is a finite dimensional vector
space. This part uses an idea from functional analysis (the Kiehl-Verdier
theorem) which was already the key ingredient for similar finiteness re-
sults in different situations (e.g., [BG80]). The main geometric argument
for both parts of this proof is the following: Let p ∈ L a point and con-
sider the germ (L, p) of L at p, which is of dimension n. Its embedding
dimension might vary in between n and 2n. If it is strictly smaller than
2n, then the variety is locally around p a product L = L′×C, where C is
a smooth curve, and L′ is a lagrangian subspace in a symplectic manifold
of dimension 2n − 2. This is already found in [Giv88]. Now the main
point is that such a lagrangian product is rather rigid, it can only be
deformed as a product by deforming the factor L′. We call this principle
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propagation of deformations. Globally, it implies that if the points of
L of maximal embedding dimension are isolated (this is essentially the
assumption for our constructibility theorem), then the cohomology of C•L
over a small neighborhood of such a point will not change if we restrict
to a smaller neighborhood. By the theorem of Kiehl-Verdier its stalk
at this point must be finite-dimensional. Lagrangian singularities hav-
ing isolated points with maximal embedding dimension therefore have
a (formally) semi-universal deformation. Hence singularities satisfying
this condition are the lagrangian analogue to isolated singularities. We
finish the second chapter by explaining our method of computing the
cohomology of C•L for a quasi-homogeneous surface. We introduce the
spectral numbers and make some conjectures concerning their symmetry.

The last chapter treats isotropic mappings. After introducing basic
properties of their deformation spaces, we calculate the tangent space
of its deformation functor for monomial curves and for maps having
as its image a lagrangian singularity which can be decomposed into a
lagrangian singularity of smaller dimension and a smooth space. Here
there is no such rigidity theorem as for deformations of subvarieties.
Therefore in general versal deformations of isotropic maps will exist only
if the critical values are isolated. We discuss in detail one particular
isotropic map, the normalization of the open Whitney umbrella. It was
already known that this map is rigid. Moreover, there is the following
theorem, stated (and proved in particular cases) by Givental ([Giv86])
and shown in general by Ishikawa ([Ish92]): Consider the space of germs
of isotropic maps form Rn into R2n, equipped with the Whitney C∞-
topology. Then this space contains a dense open subset of maps which
are equivalent (modulo diffeomorphisms of Rn and symplectomorphisms
of R2n) to a generalized open Whitney umbrella (which is the usual
one for n = 2). This result is briefly reviewed. We finish this chapter
by calculating the dimension of the infinitesimal lagrangian deformation
space as well as the δ-invariant, the usual infinitesimal deformation space
and the dimension of the module of relative differential forms for corank
one maps from R2 into R4. We conjecture a linear relation between some
of these numbers.

We have included two appendices in this thesis. The first (rather
large) one reviews the concepts of abstract deformation theory that are
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used in the text. As there is not yet a standard reference for this the-
ory, it seems appropriate to collect the results we need. We discuss first
deformation functors and categories fibred in groupoids as well as differ-
ential graded Lie algebras. We define the notion of a controlling dg-Lie
algebra. Finally, the so called T 1-lifting theorem is stated and proved.
This is a tool to deduce smoothness of a functor from a certain lifting
property of its relative tangent spaces.

In the second part of this appendix we describe basic examples of con-
trolling dg-Lie algebras. These include deformations of complex struc-
tures, associative algebras and flat deformations of analytic algebras.
The latter involves the cotangent complex, which we review in some
detail.

The second appendix is a very brief introduction to the theory of
differential modules. The aim is to define notions and principles which
are used (mainly while developing the analogous versions for general
Lie algebroids) in the text. We define the ring DX , modules over it,
good filtrations and coherent D-modules, the characteristic variety and
holonomic D-modules. We prove Kashiwara’s constructibility theorem
in complete analogy with our proof for the lagrangian de Rham complex.

Let us finish this introduction by listing some problems and questions
related to lagrangian singularities which are still open or only partially
answered. We already mentioned the problem of finding a controlling dg-
Lie algebra for the functor of deformations of a lagrangian subvariety.
It should incorporate the cotangent complex in some way because our
lagrangian deformations are flat by definition. On the other hand, even
the question whether for an ideal which is involutive up to order n there is
a lift to an ideal involutive up to order n+1 cannot be answered directly
from the complex C•L. There should be a graded bracket on this complex
derived from the Poisson bracket which gives the obstruction map. The
difficulty comes from the fact that the Poisson bracket (defined on OM )
does not descend to OL. See theorem 3.20 on page 74 for more details.

The symmetry of the spectrum for a lagrangian surface singularity is
probably related to the existence of a naturally given bilinear form on a
meromorphic bundle, which comes from the quotient of the lagrangian
de Rham complex by the de Rham complex of ordinary differential forms
on the variety. This quotient is supported on the singular locus, and we
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expect that it can be identified with a bundle the fibre of which at a point
is isomorphic to the cohomology of the Milnor fibre of the transversal sin-
gularity at this point. However, this bundle must be defined canonically,
without choosing local coordinates. This is still to be done.

Another open question concerns the structure of the category of mod-
ules over the Lie algebroid I/I2 (the conormal module). At least in the
case when this module is locally free (i.e., for complete intersections),
things are easier to handle and it is likely that the ring of generalized
differential operators constructed from I/I2 is of finite homological di-
mension. In principle, the corresponding proof for ordinary D-modules
can be adapted to this more general situation. However, the crucial in-
gredient is a dimension estimate using the Bernstein inequality for the
dimension of the characteristic variety. The characteristic variety of a
DX -module is a subspace of the cotangent bundle T ∗X . In our case,
there is an analogue of the cotangent bundle, namely, a linear space
S over the variety L and the algebra OS is equipped with a Poisson
bracket. But S is itself singular (because L is singular), so it is not a
symplectic manifold and it might be difficult to estimate the dimension
of the characteristic variety.

Returning to deformation theory, it should be noticed that although
we define all objects globally, i.e., for a lagrangian subspace of a sym-
plectic manifold, our results are local in nature. We study essentially
deformations of germs (or small representatives of them). The global de-
formation theory is probably also controlled by the lagrangian de Rham
complex, e.g., the infinitesimal deformations are given by the first hyper-
cohomology of this complex. This is however not so easy to see, much like
in the case of flat deformations, where rather heavy machinery (simplicial
resolutions of complex spaces) is needed to study global deformations.

Let L → S be a lagrangian deformation over a base S where OS,0

is an analytic algebra. Suppose that it is infinitesimal versal, i.e., the
tangent space of S at zero is isomorphic to the tangent space of the
deformation functor. In this situation one would like to know whether
the family is versal in the strong sense, i.e., whether every deformation is
equivalent by an analytic change of coordinate to a deformation induced
from L → S. For flat deformations, a semi-universal deformation in this
sense exists if the singularities are isolated, this is Grauert’s theorem. It
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uses approximation techniques in order to obtain convergent solutions.
For lagrangian singularities, there is not yet such a complete picture. We
can give a stability theorem for a family as above. This result is due to
M. Garay ([Gar02]) in the case of complete intersections. We introduce
a Kodaira-Spencer map to apply it in general. However, the convergency
of versal deformations in general is unknown. A simple use of Grauert’s
approximation theorem will not be sufficient, because we need that the
analytic coordinate change stays symplectic.

A last remark concerning the comparison of the different categories
we are working in seems in order. In application (involving the classes of
examples that we treat in the first chapter), one encounters both sym-
plectic manifolds of class C∞ and holomorphic symplectic manifolds. In
the real case one may consider C∞- or analytic lagrangian submanifolds.
In order to give a unified treatment, we adopt the following terminology:
Symplectic manifolds over K which denotes either R or C are C∞- or
holomorphic symplectic manifolds, respectively. We work only with an-
alytic lagrangian submanifolds in both cases. For some of our results we
need to restrict to the complex case, in particular, for the constructibility
theorem. One can always consider the complexification of a real analytic
lagrangian subspace. However, this may introduce additional conditions
of the complex part on the variety not visible over R.





Chapter 1

Examples of lagrangian
singularities

1.1 Involutive ideals and generating families

Throughout this thesis, we will consider symplectic manifolds over the
real or complex numbers (we denote by K either R or C). In the com-
plex case, we consider only holomorphic symplectic manifolds, i.e., com-
plex manifolds M with a non-degenerate closed two-form ω which lies in
H0(M,Ω2

M ). Hamiltonian vector fields and Poisson brackets are defined
as usual, i.e., for a function f ∈ OM the field Hf ∈ ΘM is defined by
ω(Hf , Y ) = df(Y ) for all Y ∈ ΘM . For any two functions f, g ∈ OM we
set {f, g} := ω(Hf , Hg) = Hg(f). We call a reduced analytic subspace
L (i.e., a real analytic space resp. a complex space) a lagrangian sub-
variety iff ω|Lreg

vanishes, where Lreg is the non-singular part of the
variety L. A germ (L, p) ⊂ (M,p) will be called lagrangian singular-
ity. There are several ways of describing a lagrangian subvariety resp.
singularity.

Definition 1.1. Let (M,ω) be symplectic over K. We call an ideal sheaf
I ⊂ OM involutive iff it is stable under the Poisson bracket, i.e., iff
{I, I} ⊂ I.
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The following statement, which follows immediately from the defi-
nitions relates the algebraic condition of involutiveness of an ideal with
the geometry of the subspace that it defines.

Theorem 1.2. Let I ⊂ OM be involutive. Then the subspace L ⊂ M
defined by I is coisotropic on its smooth locus. Moreover, suppose I to
be a radical ideal, which is pure of dimension n, then L is lagrangian. If
I is prime, then L is lagrangian iff I is maximal (but not equal to OM)
among all involutive ideals.

In the examples which will be given later, we always consider la-
grangian singularities with its reduced structure. A simple but impor-
tant observation is that involutiveness can be checked on the generators
of an ideal.

Lemma 1.3. Let I ⊂ OM,0 be generated by f1, . . . , fk. Then I is invo-
lutive iff {fi, fj} ⊂ I for all i, j ∈ {1, . . . , k}.

This description allows us to check whether a given subspace is la-
grangian in a purely algebraic way. As a first (and rather trivial) ex-
ample, we remark that any curve C in K2 is a lagrangian subvariety
with respect any symplectic structure of K2 given by a volume form, be-
cause {f, f} always vanishes. The involutivity of an ideal can be nicely
expressed by the so-called structure constants.

Definition 1.4. Coefficients A(k)
ij defined by the expression

{fi, fj} =
k∑
i=1

A
(k)
ij fk

are called structure constants of f1, . . . , fk. Note that these functions are
not unique.

There is another method of describing a lagrangian singularity, name-
ly, generating families. This notion is used in several ways in the liter-
ature, we will describe two different meanings of it. First we recall
the well-known principle of symplectic reduction, which is used to define
generating families and which will appear at several places later. The
general situation is the following: Consider a germ (C, 0) ⊂ (M, 0) of a
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smooth coisotropic submanifold C of dimension 2n− k (k ∈ {1, . . . , n})
inside a symplectic manifold (M,ω) of dimension 2n and a germ (M ′, 0)
of a symplectic manifold (M ′, ω′) of dimension 2(n − k) together with
a submersion π : C → M ′ such that i∗ω = π∗ω′ where i : C ↪→ M
is the inclusion. M ′ is the space of integral manifolds of the integrable
distribution (TpC)⊥ ⊂ TpM .

Theorem 1.5. Let (L, 0) ⊂ (M, 0) be a germ of a smooth lagrangian
submanifold L. Suppose that the restriction of the morphism π to C ∩L
is finite. Then the germ at zero of the image L′ := π(L) is analytic
in (M ′, 0) and lagrangian with respect to the symplectic form ω′. L′ is
smooth iff the intersection of L and C is transversal.

Now suppose that the symplectic manifold is the cotangent bundle.
Let (L, 0) ⊂ (T ∗B, 0) be a lagrangian singularity. Denote by l : (L, 0) ↪→
(T ∗B, 0) � (B, 0) the projection on the base. Consider a function germ
f : (X, 0) × (B, 0) → K where X is smooth of dimension m. Suppose
that f0 : X → K is a function with isolated critical points. Denote by
L̃ ⊂ T ∗X×T ∗B the image of df . Consider the projection π : X×T ∗B �
T ∗B (note that X×T ∗B is coisotropic in T ∗X×T ∗B). The restriction of
the projection π to the intersection C := (X×T ∗B)∩ L̃ is finite because
C is the critical space of the function f which is already finite over the
parameter space B (because f0 has isolated critical points). Therefore,
we can define Lag(f) ⊂ T ∗B to be the reduced lagrangian subvariety,
i.e. Lag(f) := π(L̃ ∩X).

Definition 1.6. We call f a generating family for l iff L = Lag(f).

First note that the constructed Lag(f) is not necessarily singular. It
is smooth iff L̃ and X × T ∗B intersect transversally. This is equivalent
to the condition that the matrix(

∂2f

∂xi∂xj
,
∂2f

∂xi∂qk

)
(where (x,q) are coordinates on X×B) has maximal rank at the origin.
However, even in this case the projection l needs not to be regular. It is
a classical result of Arnold (see [AGZV85]) that germs of lagrangian pro-
jections l : (L, 0) → (B, 0) (with L smooth) up to symplectomorphisms
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respecting the bundle structure T ∗B → B are in one to one correspon-
dence with generating families f : X × B → K (where X can vary) up
to stable R+-equivalence. This allows one to deduce a classification of
such projections from the usual classification of functions with isolated
critical points.

In general, the space Lag(f) will be singular. We give one example to
illustrate the principle of generating functions. Let X = K and B = K2.
Choose coordinates x on X and p1, p2, q1, q2 on T ∗B. Consider the
function f = x4+q1x3+q2x2. This is in some sense the simplest example
for dim(B) = 2 and dim(X) = 1 as the function ∂x∂qiF must vanish at
the origin (for i = 1, 2) to give a singular surface. By definition, we have

Lag(f) =
{

(p1, p2, q1, q2) ∈ T ∗B | ∃x :
∂f

∂x
(x,q) = 0, pi =

∂f

∂qi
(x, q)
}

This variety is given by three equations:

f1 := p2
2 + 3

4p1q1 + 1
2p2q2

f2 := p1q
2
1 + 2

3p2q1q2 − 16
9 p1p2 − 8

9p1q2

f3 := p1p2q1 − 1
2p1q1q2 − 1

3p2q
2
2 + 4

3p
2
1

These are the 2 × 2-minors of the following 3 × 2-matrix −p1q1 + 1
3q

2
2 − 2

3q1q2 + 16
9 p1

p2 + 1
2q2 −q1
3
4p1 p2


which implies that L is a Cohen-Macaulay singularity by the theorem of
Hilbert-Burch (see [Eis95]). We get the following structure constants:

{f1, f2} = 4
3q1f1 −

1
4f2

{f1, f3} = − 4
3q2f1 −

3
2f3

{f2, f3} = − 4
3q1q2f1 −

(
1
6q2 − p2

)
f2 − 8

3q1f3

The singular locus of L is a line, its reduced structure is given by
(q2, p2, p1). The Milnor number of the transversal singularity is 3. This
can be seen by comparing the Hilbert polynomials of the jacobian ideal
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of I, saturated in the origin and its radical. We see that the transversal
type is an A3-singularity. Away from the origin, L is locally a product
of this plane curve germ with a line. This is a general fact which will be
proved later (see lemma 3.31 on page 84).

For a singular lagrangian subspace of T ∗B, there might be no gen-
erating family. This happens, e.g., for the open Whitney umbrella in
R4 (the proof uses Maslov classes, see, e.g., [CdV01]). However, there is
always a generating family in a somewhat extended sense.

Definition 1.7. Let (L, 0) ⊂ (T ∗B, 0) be a lagrangian singularity. Then
a function germ f : (X, 0) × (B, 0) → K where X is smooth is called a
generating family in the generalized sense iff L is a union of components
of the lagrangian space Lag(f).

If we consider lagrangian singularities which have a smooth normal-
ization, then we can always construct generating families with additional
components. This construction is due to Zakalyukin (see [Zak90]).

Theorem 1.8. Let (L, 0) ⊂ (T ∗B, 0) be a lagrangian singularity and
let a normalization n : (X, 0) → (L, 0) ↪→ (T ∗B, 0) be given, where X
is smooth. Then a generating family F : (X, 0) × (B, 0) → K in the
generalized sense exists.

The proof is based on the following simple observation.

Lemma 1.9. Let (Y, 0) be a germ of a smooth isotropic submanifold of
the standard symplectic space (K2n, ω). Then there exists a germ (Λ, 0)
of a smooth lagrangian manifold L which contains (Y, 0).

Proof. Let Φ : (K2n, 0) → (K2n, 0) be an isomorphism such that V :=
Φ(Y ) is a linear subspace of K2n. Then ω′ := Φ∗ω vanishes on V , so that
V is an isotropic sub-vector space of the symplectic space (K2, ω′). There
is a lagrangian sub-vector space Λ′ ⊃ V and we define Λ := Φ−1(Λ′).

Proof of the theorem. Let M := T ∗B × T ∗X be the symplectic prod-
uct of the two cotangent bundles. The submanifold C := T ∗B × X
is coisotropic in M . Define Y ⊂ C ⊂ M to be the graph of the
map n : X → T ∗B. It is obvious to see that (Y, 0) is a germ of a
smooth isotropic submanifold of M . Thus we can apply the preceding
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lemma which yields a germ (L̃, 0) of a smooth lagrangian L̃ ⊂ M with
(Y, 0) ⊂ (L̃, 0). Now consider the symplectic reduction process in M
with respect to the submanifold C. Define L′ ⊂ T ∗B to be the reduced
lagrangian space. It is clear that set-theoretically L ⊂ L′, then, by the
irreducibility of L we get that L is a component of L′.

Consider the lagrangian projection (L̃, 0) ↪→ (T ∗(B ×X), 0) � (B ×
X, 0) =: (B′, 0), note that now the source L̃ is smooth. By the Arnold
correspondence there is a generating family F : X ′ × B′ → K. This
family can be considered as defined on (X ′×X)×B. Then the generated
lagrangian is the above constructed L′ which contains L as a component,
as required.

We will give a generating family in this extended sense for the open
Whitney umbrella in section 1.3 on page 29.

Quite frequently, one also finds the notion of a generating function
associated to a lagrangian singularity in the literature. This is a different
object than a generating family as above. To explain it, we first need
to recall some facts on differential forms on singularities. This will also
be useful in the second chapter. Let for a moment (X, 0) ⊂ (KN , 0)
denote any germ of an analytic subspace. Then we can consider several
quotients of the module ΩKN ,0 of differential forms on KN . The “largest”
one is usually called module of Kähler -differentials and defined by

ΩX,0 :=
ΩKN ,0

IΩKN ,0 + dI

where I ⊂ OKN ,0 is the defining ideal. The exterior powers of ΩX,0
together with the induced differential form a complex, usually called the
de Rham complex of the singularity (X, 0). However, for our purpose the
complex Ω̃•X,0 defined by Ω̃pX,0 := ΩpX,0/Tors(ΩpX,0) (where Tors(ΩpX,0)
are the torsion submodules of ΩpX,0) will be more important. It also
appears in [Giv88] and was called Ω•Giv in [Her02]. Givental defines it
as differential forms on KN modulo forms which are zero on the smooth
part of X . The module of these forms is obviously a quotient of the
module of Kähler forms, that is, there is a sequence

0 −→ K −→ ΩpX,0 −→ ΩpGiv −→ 0
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On the smooth locus, ΩpX,0 and ΩpGiv coincide, therefore the kernel is a
torsion submodule (here we have to suppose that X is reduced). But any
torsion element vanishes on Xreg so we have Tors(ΩpX,0) ⊂ K and thus
ΩpGiv = Ω̃pX,0. The following lemma recalls a well-known fact concerning
the cohomology of these two complexes.

Lemma 1.10. Let (X, 0) ⊂ (KN , 0) be quasi-homogeneous with positive
weights. Then

1. The de Rham-complex Ω•X,0 is acyclic except in degree zero where
its cohomology are the constant functions.

2. The same is true for the complex Ω̃•X,0, we have: Hi(X, Ω̃•X,0) = 0
for i > 0 and H0(X, Ω̃•X,0) = K.

Proof. Denote by E the Euler vector field corresponding to te quasi-ho-
mogeneous graduation of OKN ,0, i.e.

E =
N∑
i=1

λixi∂xi

where (x1, . . . , xN ) are coordinates on KN and λi are their (positive)
weights. The equations of X are quasi-homogeneous, thus there is an
induced graduation of OX,0 and of ΩpX,0. For a form ω, homogeneous
with respect to this graduation we get LieE(ω) = w · ω where w is the
weight of ω. On the other hand, suppose that ω ∈ Hp(Ω•X,0) for p > 0,
then LieE(ω) = diEω so with α := w−1iEω for w �= 0 we get dα = ω
meaning that ω is zero in the cohomology. But the only forms with zero
weight are the constant functions on L, this implies that H•(Ω•X,0) =
KX,0 proving the first statement. To show the corresponding result for
the complex Ω̃•X,0, consider the exact sequence of complexes

0 −→ K• −→ ΩpX,0 −→ Ω̃•X,0 −→ 0

The only point to verify is that for any vector field X ∈ ΘX,0, the
morphism iX : ΩpX,0 → Ωp−1

X,0 maps the kernel complex K• into itself.
But this is obvious, because the kernel consists of the torsion subsheaves
of ΩpX,0 and the interior multiplication iX is linear over OX,0.
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We will now give the definition and some properties of generating
functions as described in [Giv88] (some more details can also be found
in [Her02]). Let (M, 0) be a germ of a symplectic manifold (M,ω). De-
note by α the Liouville form defined in a neighborhood of the origin.
Let (L, 0) ⊂ (M, 0) be a germ of a lagrangian singularity. Consider the
restriction α ∈ Ω̃1

L,0. This form is closed in Ω̃1
L,0 (because ω vanishes

on Lreg), thus defining a class [α] ∈ H1(Ω̃•L,0). It is an invariant of the
lagrangian singularity and was called its class in [Giv88]. However, α is
not exact in general. Nevertheless, there is a Whitney regular stratifi-
cation of L and α can be integrated along pathes corresponding to this
stratification. This yields a continuous function F on L which satisfies
dF = α on Lreg. Therefore, F is analytic on Lreg. By definition, we
see that F ∈ Ow

L,0, the weak normalization of L. F is called the gen-
erating function of L. An obvious question in the situation is to know
whether F ∈ OL,0. Let us restrict to the complex case in the following.
If L is e.g. weakly normal, then F is holomorphic on the whole of L.
By definition of the complex Ω̃•L,0, if H1(Ω̃•L,0) is zero, then F ∈ OL,0.
The problem to find a holomorphic generating function is therefore re-
duced to determine whether H1(Ω̃•L,0) vanishes or not. The following
conjecture of Givental is an analogue of the famous Arnold conjecture
(proved by Gromov) for the local complex analytic case (the assumption
Hn(Ω̃•L,0) �= 0 corresponds to the compactness of the real Lagrangians
in the Arnold conjecture).

Conjecture 1.11. If Hn(Ω̃•L,0) �= 0, then H1(Ω̃•L,0) �= 0 and α is not
exact.

For lagrangian curves, this statement is true, the proof uses the Gauß-
Manin connection for hypersurface singularities. On the other hand, for
a curve H1(Ω̃•L,0) = 0 vanishes iff (L, 0) is quasi-homogenous. More pre-

cisely, we have that dimC

(
Hn(Ω̃X,0)

)
= µ− τ for any germ of a hyper-

surface singularity (X, 0) of dimension n (this is a theorem of K. Saito,
see [Sai71]). There is another special case where vanishing of the de
Rham-cohomology is known, namely, the case of isolated complete in-
tersections. The following statement is taken from [Gre80].

Theorem 1.12. Let (L, 0) be a complete intersection with isolated sin-
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gularities. Then

• Hp(Ω•L,0) = 0 for 0 < p < n.

• Hp(Ω̃•L,0) = 0 for p �= 0, n.

• Hn(Ω̃•L,0) = 0 if (L, 0) is quasi-homogenous.

Related to the above definition of generating functions is the notion
of the front of a lagrangian singularity. We suppose that the symplectic
manifold is a cotangent bundle.

Definition 1.13. Let (L, 0) ⊂ (T ∗B, 0) be a lagrangian singularity. De-
note by π : T ∗B → B the canonical projection and suppose that it defines
a finite mapping π : L → B. Let F be a generating function. Then the
image ΦL of the mapping (π, F ) : L → B × K (which is also finite) is
called the front of L.

As we have said, F is an element of Ow
L,0. In particular, it is contained

in the normalization and therefore satisfies an algebraic relation F k +
a1F

k−1 + . . .+ ak = 0 with ai ∈ OL,0. OL,0 is a finite ring extension of
OB,0 and hence there is also a relation of type Fm+b1Fm−1+. . .+bm = 0
with bi ∈ OB,0. Then the front is the vanishing locus of the polynomial
zm + b1z

m−1 + . . . + bm = 0 in B × K with coordinates (q1, . . . , qn, z)
where (q1, . . . , qn) are the coordinates on the base B. This proves that
the front is always an analytic hypersurface in B×K regardless whether
F lies in OL,0 or not.

We will give one example from [Giv88] with non-analytic generating
function. We will come back to lagrangian singularities of this type
later. Consider the germ (C, 0) of a plane curve C in C2 given by the
equation f = x3 + y7 + xy5. We see C2 as cotangent bundle of C by
the projection (x, y) 	→ x. (C, 0) is a non quasi-homogenous singularity
and H1(Ω̃•) is one-dimensional generated by the form xdy. Therefore,
the generating function F is not holomorphic on (C, 0). However, we
can consider the pullback n∗α and get a closed (and therefore exact)
form on the normalization C̃. This yields a function F ∈ OC̃ . Then
the image of the map (F, x) : C̃ → C2 is the front of the lagrangian
singularity (C, 0). Moreover, the image of the map (F, n) : C̃ → C3 is a
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legendrian space curve and the front is the front of this legendrian curve
in the classical sense if we consider (C3, 0) as (the germ of) the space of
contact elements of C2 with projection (z, x, y) → (z, x).

1.2 Open Swallowtails
Swallowtails are subspaces of manifolds consisting of polynomials (in one
variable) of fixed degree with certain coefficients fixed. Let us start with
a simple but important example. Consider the space (denoted by P5)
of polynomials P ∈ K[t] of degree five, with fixed leading coefficient and
sum of roots equal to zero. Such a polynomial can be represented as

P (t) = t5 + xt3 + yt2 + zt+ w

and choosing coordinates (x, y, z, w), the space P5 is obviously isomor-
phic to K4. Let us the following symplectic form: ω = 3dx∧dw+dz∧dy.
The origin of this form will be explained later in a more general context.
Consider the subspace of P5 which consists of polynomials having a root
of multiplicity at least three. Denote this space by Σ2. A polynomial
P ∈ Σ2 can be written as P (t) = (t − a)3(t2 + 3at + b), so there is a
parameterization of Σ2 (which is in fact the normalization) given by

n : K2 −→ P5

(a, b) 	−→ (b− 6a2, 8a3 − 3ab, 3a2b− 3a4,−a3b)

One can check directly that n∗ω = 0. On the other hand, the image is
given by the following three polynomials

f1 = 15xy2 − 45x2z + 100z2 − 375yw
f2 = 27y3 − 96xyz + 135x2w − 300zw
f3 = 9y2z − 32xz2 + 15xyw − 375w2

which are in fact the minors of the matrix 3w 9y2 − 32xz
z −5xy + 125w

−3y 45x2 − 100z


Then one can calculate explicitly the commutators:
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Figure 1.1: The open swallowtail Σ2 ⊂ R4

{f1, f2} = −6xf1 + 300f3
{f1, f3} = −4yf1 − 5xf2
{f2, f3} = −32zf1 − 27yf2 + 192xf3

This shows that Σ2 ⊂ P5 is a lagrangian subspace. Its singular locus is a
plane curve which has an A2-singularity at the origin and the transversal
singularity is also a plane cusp. The points of Sing(Σ2) correspond to
polynomials which have a root of multiplicity four. This can of course be
calculated directly, but we will prove it later for general open swallow-
tails. The only polynomial having a root of multiplicity five in P5 is t5.
This is the origin in Σ2. By differentiating an element P (t) in P5 with
respect to t, we obtain a polynomial of degree four with fixed leading
coefficient and sum of roots equal to zero. Denote the space of these
polynomials by P4. The subspace Σ2 is mapped to the space ∆2 ⊂ P4

of polynomials having a root of multiplicity two. This is a hypersur-
face in three space, the so-called ordinary swallowtail. It is given in our
coordinates by the single equation

x3y2 + 15y4 − 3x4z − 60xy2z + 40x2z2 − 400/3z3 = 0

It has a line of self-intersection. Writing Q ∈ ∆2 as Q(t) = (t−α)2(t2 +
2αt + β) yields a normalization. The self-intersection points are not
critical values of this normalization, they correspond to polynomials of
type Q(t) = (t−α)2(t+α)2. These polynomials have two images under
the normalization. This phenomenon does not occur for polynomials
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Figure 1.2: The ordinary swallowtail ∆2 ⊂ R3

in degree five, hence, the line of self-intersection disappears. The ordi-
nary swallowtail is drawn in figure 1.2. Note that over R, the line of
self-intersection is continues outside the surface. We will see this phe-
nomenon occurring again in real representations of several other surfaces.
A conceptual picture of the open swallowtail is given in figure 1.1 on the
page before. We have marked the strata of constant embedding dimen-
sion, namely, the regular locus, the smooth points of the singular locus
and the origin. Again the variety is a product locally along its singular
locus away from the origin. See lemma 3.31 on page 84 and 3.33 on
page 85 for further explanations.

The variety Σ2 is quasi-homogenous with respect to the weights

deg(x) = 2, deg(y) = 3,
deg(z) = 4, deg(w) = 5

This implies that for a form α ∈ Ω1
Σ2

with dα = ω, a generating function
F ∈ OΣ2 exists. For α = −3wdx + zdy, we obtain the function F =
9a5b − 3a3b2 − 72

7 a
7 ∈ ÕΣ2 on the normalization satisfying dF = n∗α.

Using Singular (see [GPS01]), we see that F lies indeed in the subalgebra
OΣ2 and can be expressed as F = 3

7yz −
6
7xw. The image of the map

Σ2 → K3 which sends (x, y, z, w) to (w, y, F (x, y, z, w)) is the front of
Σ2. It is the hypersurface given by the following equation, where we take
(w, y, t) as coordinates on K3:
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Figure 1.3: The front of the open swallowtail

896
16875x

6y3 + 203
625x

3y5 − 896
1875x

7t+ y7

− 2009
675 x

4y2t− 196
15 xy

4t+ 2744
81 x2yt2 − 27440

729 t3

A picture of this surface is given in figure 1.3. Its singular locus is a
union of two space curves C1 and C2. The transversal type of the front
at C1 is A4. This is not a surprise: The transversal singularity of the
open swallowtail Σ2 is a cusp, and the front of a cusp is easily seen to
be of type A4. At the other component C2, the transversal singularity
is A1. This is just a self-intersection of the front, not a singularity of
the parameterization. However, over the reals the transversal curve at
C2 is a point, so that the real picture of the front is a union of a surface
with a space curve (much like for the ordinary swallowtail in R3). Note
that also C1 has embedding dimension three, in contrast to the singular
locus of Σ2 ⊂ K4, which is a plane curve.

In the following definition, we introduce general open swallowtails in
polynomial spaces of any (even) dimension.

Definition 1.14. Denote by Fk(x,a) = xk + a2
(k−2)!x

k−2 + . . .+ ak the
universal unfolding of xk. Let Pk the space of all polynomials Fk. In
particular, we consider the space of polynomials of odd degree, that is,

P2n+1 =
{
x2n+1 +

a2

(2n− 1)!
x2n−1 + . . .+ a2n+1 | ai ∈ K

}
∼= K2n
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which comes equipped with the following symplectic structure

ω =
n+1∑
i=2

(−1)idai ∧ da2k+3−i

Let Σn be the subspace of polynomials having a root of multiplicity greater
than n.

Theorem 1.15. Consider the open swallowtail Σn ⊂ P2n+1.

1. Σn is lagrangian in P2n+1.

2. Σn is a Cohen-Macaulay singularity.

Proof. To prove the first statement, one has to understand the origin
of the symplectic structure in P2n+1. This has been done in detail in
[Sev99] (and can of course be found in [Giv88]). We only remark that
P2n+1 is the two-fold symplectic reduction of the space P̃2n+3 of polyno-
mials of degree 2n+ 3 without any restriction (this space has dimension
2n+4). In P̃2n+3 one has a natural symplectic structure coming from the
representation of sl2. By performing only the first symplectic reduction,
one obtains an intermediate space P̂2n+2 of dimension 2n+ 2 (which is
the space of polynomials of degree 2n+ 2 with fixed leading coefficient).
Then the second symplectic reduction from P̂2n+2 onto P2n+1 is in fact
the quotient map onto the orbit space of the group action which is the
translation of the argument. In P̂2n+3, the subspace of all polynomials
having zero as a root of multiplicity greater than n + 1 is lagrangian
(because half of the coordinates are zero), and by translating the argu-
ment one obtains precisely any polynomial having an arbitrary root of
multiplicity greater than n.

The second statement is evident for n = 2 by the Hilbert-Burch
theorem. In higher dimension, we use an argument which can be found
in [Giv88]. To prepare it, suppose that for a given singularity (X, 0) we
have a finite mapping (X, 0) → (Y, 0) with Y smooth. Then OX,0 is a
Cohen-Macaulay ring if it is a Cohen-Macaulay OY,0-module. But this
is (as OX,0 is OY,0-finite) equivalent to the condition that OX,0 is a free
OY,0-module. Therefore, to conclude it suffices to prove the following
lemma.
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Lemma 1.16. Let Σn ⊂ P2n+1. Then

1. A normalization of Σn is given by the following map

ϕ : Σ̃n := Kn −→ Σn ⊂ P2n+1

(t, a2, . . . , an) 	−→ (x− t)n+1 · (xn + b2x
n−1 + . . .+ bn)

where bi ∈ OΣ̃n,0
are chosen such that the coefficient of t2n+1−i in

the polynomial ϕ(t, a) is precisely ai/(2n+ 1 − i)! for i = 2, . . . , n
(in particular, b2 = (n+ 1)t).

2. We have the following description of OΣn,0 as a subalgebra of
OΣ̃n,0

:

OΣn,0 =
{
C(a) +

∫ t

0

Q(z,a)Fn(z,a)dz |C ∈ OPn+1,0, Q ∈ OΣ̃n,0

}
where the function C of the coordinates a2, . . . , an+1 is seen as
defined on the space of polynomials Pn+1 = {xn+1 + a2

(n−1)!x
n−1 +

. . .+ an+1}.

3. Consider the map P2n+1 → Pn+1 given by the n-th derivative.
Then the restriction Σn → Pn+1 is finite of degree n+1. Moreover,
OΣn,0 is a free OPn+1,0-module of rank n+ 1.

Proof. 1. One calculates easily that the bi’s as in the theorem exist
and are uniquely defined. Therefore the map ϕ is well-defined. It
is a normalization because for any polynomial P ∈ Σn, the values
t and a2, . . . , an such that ϕ(t, a) = P are uniquely determined, so
the map is generically one to one.

2. We first show that for any i = 1, . . . , n + 1, the following formula
holds in the ring OΣ̃n,0

:

an+i =
(−1)i

(i− 1)!

∫ t

0

Fn(z,a)zi−1dz

Here an+i is seen as lying in OΣ̃n,0
via the inclusion ϕ∗ : OΣn,0 ↪→

OΣ̃n,0
. We prove this formula by induction on i: let first i = 1,

then

−
∫ t

0

Fn(z,a)dz = −Fn+1(t, a) + an+1
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But t is a root of Fn+1(z,a) (because this is just the n-th derivative
of F2n+1(z,a) which is supposed to have a zero of multiplicity n+1
at t). For the induction step, we use integration by parts:

(−1)i

(i−1)!

∫ t

0
Fn(z,a)zi−1dz =

(−1)iti

(i−1)!
Fn+1(t,a) − (−1)i

(i−2)!

∫ t

0
zi−2Fn+1(z,a)

The first term vanishes as above, and by setting n′ := n + 1 we
obtain

(−1)i

(i − 1)!

∫ t

0

Fn(z,a)zi−1dz =
(−1)i−1

(i − 2)!

∫ t

0

zi−2Fn′(z,a) = an′+(i−1)

by induction hypothesis. But an′+(i−1) = an+i so the formula is
proved. Using this identity we can already show that any function
g ∈ OΣn,0 can be represented as required. Lift g to a function
G ∈ P2n+1,0. Then we have

∂tG =
n∑
i=1

∂an+iG · ∂tan+i = Fn(t, a) ·
(

n∑
i=1

∂an+iG
(−1)i

(i− 1)!
ti−1

)

ThusG has the required form. It remains to show that any function
G = C(a)+

∫ t
0 Q(z,a)Fn(z,a) can be written as depending only on

a2, . . . , a2n+1, i.e., can be lifted to OP2n+1,0. This will show that
functions of this type lie already in OΣn,0. To do this Givental
uses a trick involving a versality theorem for semi-forms. We will
not discuss this here in detail but quote the result we need: Any
function α ∈ K{t, a2, . . . , an+1} can be written as

α(t, a) = Fn(t, a)R(t, a) +
1
2
Fn+1(t, a)∂tR(t, a) +

n∑
i=1

λi(a)
(i− 1)!

ti−1

for functions R ∈ OΣ̃n,0
and λi ∈ K{a} (the non-standard term is

1
2Fn+1(t, a)∂tR(t, a)). We multiply the above equation by Fn+1:

Fn+1(t, a)α(t, a) = ∂
∂t

(
R(t, a)F

2
n+1(t,a)

2

)
+
∑n
i=1

λi(a)
(i−1)! t

i−1Fn+1(t, a)
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and integrate:

t∫
0

Fn+1(z,a)α(z,a)dz =
n∑
i=1

λi(a)
t∫
0

zi−1Fn+1(z,a)
(i−1)! dz

−
(
R(0, a)F

2
n+1(0,a)

2

)
Integration by parts yields:

t∫
0

Fn(z,a)Q(z,a)dz =

n∑
i=1

λi(a)an+i+1 −
(
R(0,a)

F 2
n+1(0,a)

2
− Fn+1(0, a)Q(0,a)

)
︸ ︷︷ ︸

λ0(a2,...,an+1)

where Q is a primitive of α. Note that we have used two times the
fact that t is a root of Fk+1. So we have a lift of functions of type∫ t
0 Fn(z,a)Q(z, a)dz + C(a) to OP2n+1,0 as required.

3. The map Σn,0 → PPn+1,0 is of degree n+ 1 because any (generic)
polynomial with (simple) roots t1, . . . , tn+1 has n+1 preimages un-
der this map, namely, the polynomials (x− tj)n+1

∏n+1
i=1,i�=j(x− ti)

for j = 1, . . . , n+1. This implies that OΣn,0 is a finitely generated
OPn+1,0-module of rank n + 1. The last formula shows that it is
generated by 1, an+2, . . . , a2n+1, so it must be free.

1.3 Conormal cones

Conormal cones are a systematic way to construct lagrangian singu-
larities from given singularities of lower dimension. We first illustrate
this with a simple example. Let (C, 0) ⊂ (K2, 0) be the ordinary cusp
singularity, i.e., the germ at zero of the vanishing locus of the polyno-
mial z3 − w2. Consider the normalization m : (K, 0) → (C, 0) given
by s 	→ (s2, s3) = (z, w). A vector (a, b) is a normal vector to a point
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Figure 1.4: The ordinary Whitney umbrella in R3

p = m(s) ∈ C iff 2as + 3bs2 = 0, or a = − 3
2 bs. Therefore, if we iden-

tify the tangent bundle of K2 with K4 the map (let (x, y, z, w) be the
coordinates in K4)

ñ : K2\(0, 0) −→ K4

(s, t) 	−→ (−3st, 2t, s2, s3)

is a parameterization of the normal bundle of the smooth part of C.
Using the standard metric on K4 = TK2, we can identify tangent and
cotangent bundle to obtain a smooth subvariety W0

2 in the cotangent
bundle. W0

2 is of course just the total space of the conormal bundle of
Creg. We define W2 to be the algebraic closure of W2

0 . The projection of
K4 onto K3 along the w-axis sends W2 to the so called ordinary Whitney
umbrella (one also finds the nameD∞-singularity). This surface in three-
space is given by the single equation y2z− 4

9x
2. It is drawn in figure 1.4.

The singular locus of the ordinary Whitney umbrella is a line, whereas
W2 has a unique singular point at the origin. One can think of W2 as
being obtained from the ordinary Whitney umbrella be unfolding the
singular line. Therefore it was called open (unfolded, unfurled) Whitney
umbrella by Givental ([Giv86]). In our example W2 is given by the
following four polynomials.

f1 := xz + 3
2yw ; f2 := x2 − 9

4y
2z

f3 := yz2 + 2
3xw ; f4 := z3 − w2
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Let the symplectic form ω be dx∧ dz+ dy ∧ dw. Then the commutators
of the above equations are:

{f1, f2} = −2f2 ; {f1, f3} = 1
2f3

{f1, f4} = 3f4 ; {f2, f3} = yf1

{f2, f4} = 6zf1 ; {f3, f4} = 0

This proves that W2 is lagrangian. By looking at theses commutators,
one sees that there are several subsets of {f1, . . . , f4} generating ideals
which are closed under the Poisson bracket (closed Lie subalgebras).
These correspond to lagrangian varieties including W2 as a component.

closed Lie subalgebra ideal of additional component
(f1, f2, f3) (x, y)
(f1, f2, f4) (y2, w, xz, x2, z3)
(f1, f3, f4) (z, w)

(f1, f2) (y2, xy, xz + 3/2yw, x2)
(f1, f3) (x, y) ∩ (z, w)
(f1, f4) (z2, xz + 3/2yw, zw,w2)
(f3, f4) (zw, yz2 + 2/3xw,w2, z3)

Note, however, that only the ideals (f1, f2, f3), (f1, f3, f4) and (f1, f3)
define spaces with reduced structures. In all cases we get a union of W2

together with one or two planes (which might have a multiple structure).
We have seen that W2 is not a complete intersection. It is not even a
Cohen-Macaulay singularity, because this would force W2 to be normal
(since it is regular in codimension one), but the map ñ is in fact a
normalization.

The natural projection (x, y, z, w) → (z, w) is not finite on W2. Hence
there is no front of W2 with respect to this cotangent fibration. How-
ever, the projection (x, y, z, w) → (z, y) induces a finite map W2 → K2.
The generating function with respect to this projection is F = −4yw
and the associated front in K3 is given by the equation x2y3 − z2 (see
picture 1.5 on the following page). This surface is called composed Whit-
ney umbrella in [Giv86]. We will encounter the open Whitney umbrella,
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Figure 1.5: The front of the open Whitney umbrella

embedded in this cotangent fibration once again in the last chapter (def-
inition 4.7 on page 119).

The construction of the open Whitney umbrella from a plane cusp
can of course be done in much greater generality. More precisely, let X
be a smooth N -dimensional manifold. Let T ∗X be the cotangent bundle
of X and Y a smooth submanifold of X . Then the conormal bundle of
Y in X is defined as

T ∗YX :=
{
λ ∈ T ∗X|Y | λ|TY ≡ 0

}
⊂ T ∗X|Y ⊂ T ∗X

By choosing local coordinates, one sees immediately that the total space
of T ∗YX is always a lagrangian submanifold of the symplectic manifold
T ∗X , regardless of what the dimension of Y is (extreme cases are: Y = X
then T ∗YX is the zero section of T ∗X and Y = {pt} then its conormal
bundle is just the fibre of the fibration T ∗X → X over the point Y ).
Now suppose that we are given an arbitrary (not necessarily smooth)
reduced analytic subspace Y ⊂ X . Define

C∗YX :=
{
λ ∈ T ∗X|Yreg

| λ|TY ≡ 0
}

Lemma 1.17. C∗YX (which is also denoted by T ∗YX) is a lagrangian
subvariety of the cotangent bundle. It is a conical variety in the fibre
direction of T ∗X, that is

(p, q) ∈ C∗YX ⇐⇒ (λp, q) ∈ C∗YX ∀λ ∈ K∗
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Proof. The conormals to smooth points are dense in their closure, so a
dense subset of C∗YX is lagrangian, meaning that the whole space is a
lagrangian subvariety. C∗YX is obviously conical, as the vanishing of a
form is equivalent to the vanishing of a non-zero multiple of it.

Characteristic varieties of holonomic D-modules are unions of conor-
mal cones. We explain the relevant notions in some detail in Appendix B,
see in particular lemma B.8 on page 178. In the following theorem, taken
from [Giv88], generalized Whitney umbrellas in any even dimension are
introduced.

Theorem+Definition 1.18. Define the open Whitney umbrella W2n

by one of the following equivalent descriptions.

1. W2n ⊂ K4n is the conormal cone to the open swallowtail Σn ⊂ K2n

(see section 1.2 on page 22).

2. W2n is the submanifold of the space of pairs of polynomials of type

F = z2n+1

(2n+1)! + a1
z2n−1

(2n−1)! + . . .+ a2n

G = (−1)2nb2n z2n−1

(2n−1)! + b2n−1
z2n−2

(2n−2)! + . . .+ b1

consisting of (F,G) with a common root t of multiplicity (n+1, n).

3. Let
Fn(q,Q, t) =

∫ t
0

(
Q1z

n−1 + . . .+Qn
)

·
(
zn+1 + q1z

n−1 + . . .+ qn
)
dz

Then Fn is a generating family in the generalized sense of W2n.

Proof. We will first show the equivalence of the first two definitions.
Consider the following parameterization of the open swallowtail (note
that this is not the same as in section 1.2).

n : Kn −→ P2n+1

(q1, . . . , qn−1, t) 	−→ (z − t)n+1·
(zn + (n+ 1)tzn−1 + q1z

n−2 + . . .+ qn−1)

The derivative Dn of n, restricted to the regular locus of n is an iso-
morphism from the total space of the tangent bundle of Kn (that is,
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from K2n) to the tangent bundle of (W2n)reg. The closure of the lat-
ter equals the conormal cone C∗W2n

P2n+1 (because Σn is lagrangian in
P2n+1). But the image of Dn(q, t) (the tangent space of n(q, t)) consists
of all polynomials of degree 2n− 1 with t a root of multiplicity at least
n.

Now we show that one component of the variety generated by the
family Fn equals W2n. The equation ∂tFn = 0 is a product, the compo-
nent describing W2n is tn+1 + q1t

n−1 + . . . + qn. Consider pi := ∂qiFn
and Pi := ∂QiFn. It follows easily from lemma 1.16 on page 27 that the
map (t, q1, . . . , qn−1) 	→ (P1, . . . , Pn, q1, . . . , qn) is the normalization of
the n-dimensional swallowtail, i.e., the image of a point (t,q) is a poly-
nomial of degree 2n + 1 with t a root of multiplicity n + 1. For this t,
the image of the map (Q1, . . . , Qn−1, t) 	→ (p1, . . . , pn, Q1, . . . , Qn) is a
polynomial of degree 2n−1 with t a root of multiplicity n−1. Therefore,
the map (t, q1, . . . , qn−1, Q1, . . . , Qn) 	→ (P,p,Q,q) is a normalization
of W2n.

In [Giv88], there is yet another characterization of W2n. We give it
here without proof. Denote by W̃2n the normalization of W2n. Consider
the so-called Morin map (see [Mor65]):

W̃2n −→ K2n+1

(Q1, . . . , Qn, q1, . . . , qn−1, t) 	−→ (Q1, . . . , Qn, q1, . . . , qn, pn)

It can be seen as the restriction of the projection

K2n+2 −→ K2n+1

(Q1, . . . , Qn, q1, . . . , qn, pn, t) 	−→ (Q1, . . . , Qn, q1, . . . , qn, pn)

to the codimension two submanifold given by F = tn+1 + q1t
n−1 + . . .+

qnt+ qn and G = Q1t
n +Q1t

n−1 + . . .+Qnt+ pn. Let K ⊂ ΘW̃2n,0
be

the kernel of the derivative of the Morin map at zero. Then there is the
following equality of subalgebras of OW̃2n,0

OW2n,0 =
{
f ∈ OW̃2n,0

| K(f) ∈ mOW̃2n

}
Of course the definition of the open Whitney umbrella as conormal

cone of the open swallowtail applies to our first example: Σ1 is just the
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ordinary cusp in the plane, its conormal space is the two-dimensional
open Whitney umbrella W2.

1.4 Integrable systems

A very important class of lagrangian singularities arises when one sup-
poses that an involutive ideal I is generated by exactly n equations
f1, . . . , fn (i.e., the lagrangian singularity is a complete intersection) such
that the Poisson brackets of these generators are zero not only in OL

but on the whole of M . Then the map F = (f1, . . . , fn) : M → Kn,
all fibres of which are lagrangian subspaces of M , is called a (com-
pletely) integrable system. The simplest integrable system is again a
curve in the plane (the case n = 1): the Poisson bracket of its defining
equation with itself vanishes. The next step is to consider products of
such curves: In general, given two lagrangian subvarieties L1 ⊂M1 and
L2 ⊂ M2, the product L1 × L2 is lagrangian in the symplectic product
(M1×M2, pr∗1ω1−pr∗2ω2), pri being the projections. If we take n curves
Ci ⊂Mi

∼= K2 with defining equations fi ∈ K{pi, qi}, then C1× . . .×Cn
is lagrangian in

∏n
i=1Mi

∼= K2n and the system (f1, . . . , fn) is integrable.
As an example, consider the product of two cusps given by f1 = x2 − y3

and f2 = s2 − t3 in four-space. This is a lagrangian surface with one di-
mensional singular locus which consists of two components isomorphic to
the two cusps. The transversal singularity at a singular point obviously
is also a cusp.

In order to get more interesting examples, we use the following trick:
Consider the case n = 2, choose coordinates (p1, q1, p2, q2) of K4 and set
z1 = p1 + iq1 and z2 = p2 + iq2 (This can obviously be done only in
the real case, but it is a formal calculus which works as well for K = C

as for K = R). We can now express functions on K4 in the variables
z1, z2, z1, z2, and the Poisson bracket becomes

{f, g} = 2i (∂z1f · ∂z1g − ∂z1g · ∂z1f + ∂z2f · ∂z2g − ∂z2g · ∂z2f)

We want to find functions f1, f2 such that {f1, f2} = 0. Set, for example
f = λz1z1 +µz2z2 and let us look for a g = zα1 z1

βzγ2 z2
δ for some param-

eters λ, µ, α, β, γ, δ ∈ N. It can easily be verified that the commuting
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condition transforms to λ(α − β) − µ(γ − δ) = 0. The following table
shows the equations for some coefficients λ, µ and exponents α, β, γ, δ.

λ, µ α, β, γ, δ equations

1, 0 0, 0, 1, 1 p2
1 + q2

1 , p2
2 + q2

2

1, 2 0, 2, 1, 0 p2
1 + q2

1 + 2(p2
2 + q2

2), p2(p2
1 − q2

1) + 2p1q1q2

1, 3 3, 0, 0, 1 p2
1 + q2

1 + 3p2
2 + 3q2

2, 6q2p2
1q1 − 2q2q3

1 + 2p2p3
1 − 6p2p1q2

1

1, 4 4, 0, 0, 1 p2
1 + q2

1 + 4p2
2 + 4q2

2,

2p4
1p2 + 8p3

1q1q2 − 12p2
1q2

1p2 − 8p1q3
1q2 + 2q4

1p2

1, 2 1, 3, 1, 0 p2
1 + q2

1 + 2(p2
2 + q2

2), 2p4
1p2 + 4p3

1q1q2 + 4p1q3
1q2 − 2q4

1p2

2, 3 3, 0, 0, 2 2p2
1 + 2q2

1 + 3p2
2 + 3q2

2 ,

2p3
1p2

2 − 2p3
1q2

2 + 12p2
1q1p2q2 − 6p1q2

1p2
2 + 6p1q2

1q2
2 − 4q3

1p2q2

2, 5 5, 0, 0, 2 2p2
1 + 5p2

2 + 2q2
1 + 5q2

2 , p5
1p2

2 − 10p3
1p2

2q2
1 + 5p1p2

2q4
1 + 10p4

1p2q1q2

−20p2
1p2q3

1q2 + 2p2q5
1q2 − p5

1q2
2 + 10p3

1q2
1q2

2 − 5p1q4
1q2

2

Remark that only in the first four cases we obtain reduced structures.
It is of course always possible to calculate with the radicals, but they
are in general no longer complete intersections.

One might ask whether there are complete intersection singularities
whose defining ideal does not admit a commuting system of generators
(see also [CdV01]). As there seems to be no such example, we state the
following conjecture.

Conjecture 1.19. Let (L, 0) ⊂ (K2n, 0) be a lagrangian singularity
which is a complete intersection. Then L defines an integrable system,
i.e., there is a set of generators f1, . . . , fn of the ideal I ⊂ OM,0 defining
L in M such that {fi, fj} = 0 in OM,0.

1.5 The µ/2-stratum
We will encounter the open swallowtail once again in this section. Sur-
prisingly enough, it appears in a different space with different symplectic
structure. The mapping sending the swallowtail as defined before to the
“new” one turns out to carry one symplectic structure into the other.
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We start, as in section 1.2 on page 22 with the space of polynomials

P5 = {t5 + xt3 + yt2 + zt+ w}

together with the symplectic structure ω = dx∧dw+3dz∧dy+xdx∧dy.
Now consider the subspace of polynomials having two roots, each of
multiplicity two. Like before, any such polynomial can be written as
Q = (t− a)2(t− b)2(t+ 2a+ 2b) yielding a normalization

n : K2 −→ P5

(a, b) �−→
(
− 3a2 − 3b2 − 4ab , 2a3 + 2b3 + 8a2b + 8ab2,

−7a2b2 − 4a3b − 4ab3 , 2a3b2 + 2a2b3
)

One obtains again a determinantal variety in K4, which we denote by
B2, where 2 stands for the number of double roots of the polynomials
that are the points of B2. Define the following map

R : P5 −→ P5

(x, y, z, w) 	−→
(

3
2x, 3y, 3x

2 − 12z, 8w− 1
2xy
)

It can be checked by an explicit calculation that R is an automorphism
of P5 which sends B2 to Σ2 and which interchanges (up to a factor) the
two symplectic structures.

As before, we consider the spaces P2n+1 for any n. Let Bn ⊂ P2n+1

be the space of all polynomials having n roots of multiplicity two. Then
we have the following

Theorem 1.20. Consider the space P2n+1 of polynomials of degree 2n+
1 with arbitrary sum of roots, i.e., the space of polynomials of type P (t) =
t2n+1 + a0t

2n + . . . + a2n. This space is canonically graded by setting
deg(ai) = i. Define the following map

R : P2n+1 −→ P2n+1

P (t) 	−→ R(P )(x)

where the polynomial R(P )(x) is defined as

R(P )(x) := Rest=∞

(
t2n
(
1 − x

t

)n− 1
2
(
1 +

a0

t
+ . . .+

a2n

t2n+1

) 1
2
)
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The map R is an automorphism of the space P2n+1. It sends the sub-
space P2n+1 into itself (thus defining an automorphism of P2n+1) and the
subspace Bn ⊂ P2n+1 of polynomials having n double roots to the space
Σn ⊂ P2n+1 of polynomials having one root of multiplicity n + 1. The
space Bn is lagrangian with respect to the symplectic form R∗ω (where
ω is the natural symplectic structure in P2n+1 constructed above).

Proof. We use a Taylor expansion. One finds that

(1 − p)n−
1
2 = 1 −

(
n− 1

2

)
p+
(
n− 1

2

) (
n− 3

2

)
p2 − . . .

(1 + q)
1
2 = 1 + 1

2q −
1
8q

2 + . . .

We substitute the above expressions and compute first modulo the ideal
(a0, . . . , a2n)2 to obtain

R(P )(x) = Rest=∞

( (
1 − 2n−1

2
x
t + 2n−1

2
2n−3

2

(
x
t

)2 + . . .
)

·
(
t2n + a0

2 t
2n−1 + . . .+ a2n

2 t−1
))

mod a2

The first factor does not contain any ai and all coefficients are non-zero.
Therefore, the polynomial R(P ) has a fixed highest order coefficient, i.e.,
the map R is well-defined. Moreover, R is invertible and respects the
grading. This implies that if the coefficient a0 vanishes, then the sum
of roots of R(P ) also vanishes. Therefore we get an automorphism of
P2n+1.

Now we prove that R sends Bn to Σn. Any P ∈ Bn can be written
as P (t) = (t− a)

∏n
i=1(t− λi)2. Then we have

R(P )(x) = Rest=∞

(√
(t− a)(t− x)2n−1

n∏
i=1

(t− λi)

)

and moreover

R(P )(k)(x) = ck · Rest=∞

(√
(t− a)(t− x)n−k−

1
2

n∏
i=1

(t− λi)

)
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where ck is the constant factor (−1)k (2n−1)·(2n−3)·...·(2n−2k+1)
2k . This

shows that the expression under Res is regular at infinity for x = a
and k ≤ n. In other words, R(P )(k)(a) = 0 for k = 0, . . . , n, which
proves that R(P ) ∈ Σn.

The proof of the last statement (the fact that Bn is lagrangian with
respect to R∗ω) will be postponed after we have introduced the sym-
plectic structure R∗ω in a canonical way.

The space P2n+1 can of course be seen as the universal unfolding of
the A2n-singularity. We will introduce a canonical symplectic structure
on the unfolding space of any function with isolated critical points. Our
main reference for the following paragraphs is [VG82].

Consider the germ of a holomorphic function

f : (Cn+1, 0) −→ (C, 0)

with isolated critical points. This amounts to say that the Milnor algebra
OCn+1,0/Jf (where Jf is the Jacobi ideal of f) is finite dimensional over C
(denote its dimension by µ). Then it is well known that a semi-universal
unfolding of f is given by a germ of a function

F : (Cn+1 × Cµ, 0) −→ (C, 0)

with F (x, t) = f(x) +
∑µ
i=0 gi · ti, where g1, . . . , gµ is a chosen basis of

the Milnor algebra. Moreover, it is possible and often convenient to take
g1 = 1. Following standard terminology, we will also call the morphism

ϕ : (Cn+1 × Cµ, 0) −→ (C× Cµ, 0)
(x, t) 	−→ (F (x, t), t)

an unfolding of f . We need to choose representatives of these germs, they
have to respect certain (transversality) conditions. The existence of good
representatives follows from general results as found, e.g. in [Loo84]. De-
note by M ⊂ Cµ, S ⊂ C resp. X ⊂ Cn+1 small neighborhoods of 0 in
Cµ, C resp. Cn+1 such that F : X×M → S and ϕ : X×M → S×M are
representatives of the above germs with the desired properties. There
are distinguished hypersurfaces of M (discussed in [Her02]), namely, the
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discriminant, the caustic and the bifurcation diagram. We are only in-
terested in the discriminant here. There are several ways to introduce
it: We first define the critical space of the unfolding F to be

CF := {(x, t) ∈ X ×M | dxF (x, t) = 0}

The complex structure of CF is taken to be the one given by the Ja-
cobi ideal (∂xiF ). It will be in general non-reduced. One might define
the “big discriminant” as Ď := ϕ(CF ) ⊂ S ×M and the discriminant
as D := ϕ(C ∩ F−1(0)) ⊂ {0} × M ∼= M . It is the hypersurface of
parameters t such that the deformed singularity, that is, the zero fibre
of the deformed function Ft is still singular. An important fact is that
the regular locus Dreg consists of those parameters t where F−1

t (0) has
exactly one double point (an A1-singularity). Consider the hypersur-
face V := F−1(0) ⊂ X × M . Then the restriction of the projection
X ×M → M to V ∩ F−1(M\D) is a smooth morphism whose fibres
are all homotopy equivalent to the Milnor fibre of original function f .
Therefore, we have a well-defined holomorphic vector bundle H →M\D
of rank µ whose fibres over a point t ∈M\D are the cohomology spaces
Hn(Vt,C) = Hn(ϕ−1(0, t),C). This bundle comes with a flat structure,
defining the Gauß-Manin connection ∇ on H . Denote by H the sheaf of
holomorphic sections of H . Then one might ask about possible exten-
sions of H over the discriminant D. The second part of [Her02] contains
an extensive study of this problem. We quote one result.

Theorem 1.21. Denote by i : M\D ↪→ M the inclusion. Let k ∈ Z be
fixed. Then there is a coherent sheaf H(k) of OM -modules, which is a
subsheaf of i∗H with the following properties: There is a connection ∇
on H(k), meromorphic along D, i.e., a morphism

∇ : H(k) −→ H(k) ⊗ ΩM (∗D)

which is logarithmic (meaning that the image of ∇ is contained in H(k)⊗
ΩM (log D)). Moreover, the residue endomorphism of ∇ along Dreg

(see [Her02], chapter 8, for a precise definition) is

• semi-simple with eigenvalues n−1
2 − k (with multiplicity one) and

zero (with multiplicity µ− 1) in case that n−1
2 �= k
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• nilpotent with one Jordan block of size two in case that n−1
2 = k

These sheaves form a good filtration (definition B.4 on page 176) on
the Gauß-Manin system (see, e.g., [Oda87] and the references therein).

Now that we know about the existence of the modules H(k) we de-
scribe how to construct sections of it. Consider the sheaf of differential
n-forms ΩnX×M . For any form ω ∈ ΩnX×M , the restriction to Vt for
t /∈ D is closed and defines an element of Hn(Vt,C). Thus the map
Pω : t 	→ [ω]t ∈ Hn(Vt,C) is a well-defined section of the bundle H. We
can also see it as an element of i∗H. Then we have the following.

Lemma 1.22. The section Pω lies in H(−1).

Proof. The first case to consider is that of a non-degenerate critical point.
Its Milnor number equals one, thus there is only one vanishing cycle γ.
Let t be the coordinate on M (which is also one-dimensional). It is
classical to prove (see [AGZV88] or [Arn90]) that∫

γ

ω = ct
n+1

2 + . . .

with c �= 0 and where the dots stand for higher order terms. Hence, for
a general function, the residue endomorphism along Dreg has n+1

2 as an
eigenvalue proving that Pω ∈ H(−1).

Following Varchenko and Givental, we will call the map Pω a period
map (in a similar situation, such a map is called infinitesimal period map
in [Sab02]). Any period map defines via the Gauß-Manin connection a
morphism from the tangent bundle to H(−1), namely:

Φω : ΘM −→ H(−1)

X 	−→ ∇XPω

One might consider the covariant derivative of Pω with respect to the
vector field ∂t1 . From the fact that the H(k) define a filtration on the
Gauß-Manin system it follows that ∇k

∂t
Pω ∈ H(k−1). The section ∇k

∂t
Pω

defines a period map denoted by Φkω which is called k-th adjoint period
map in [VG82].
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Denote by φkω := Φk|M\D the restriction to a morphism from Θ|M\D to
H. A period map Pω is called non-degenerate in [VG82] iff the morphism
φω is an isomorphism of vector bundles. It turns out that the non-
degeneracy of a period map is determined by finite jets of the form ω
and that under some hypothesis (see lemma 1.23 below), almost all forms
give rise to non-degenerate period maps.

Suppose that we are given a form ω which yields an non-degenerate
period map. Then we can use the bundle isomorphism ΘM\D → H to
carry over existing structures in H onto the tangent bundle. Most im-
portant in the following is the intersection form on H: this is a bilinear
(possibly degenerate) pairing I : H ⊗H → OM\D defined by the topo-
logical intersection form of n-cycles in the manifolds Vt. The pairing I is
symmetric (resp. anti-symmetric) iff n is even (resp. odd). The follow-
ing lemma, taken from [VG82] shows how I can be carried over to the
tangent bundle of M .

Lemma 1.23. Suppose that I is non-degenerate and anti-symmetric
(the number of arguments of f is even). Then µ is even and we have

• Almost all forms ω yield non-degenerate period maps, i.e. forms
with degenerate P kω form in the jet space an analytic subset.

• Let ω ∈ ΩnM×X such that P kω is non-degenerate. Then there is
an anti-symmetric form induced on ΘM\D. For k = n+1

2 − 1,
this form extends to a holomorphic form on ΘM which is a closed
differential form on M , i.e. a symplectic structure. We call it
intersection form on M .

Proof. For the proof of both parts of the theorem, one needs to study
the behavior of integrals of the type

∫
γj

∇∂ti
P kω where γ1, . . . , γµ is a

basis of horizontal sections of the homology bundle. The period map P kω
is non-degenerate iff the determinant of the matrix J := (

∫
γj

∇∂ti
P kω )i,j

(this is the Jacobi matrix of the period map) does not vanish outside the
discriminant. This determinant is not a single-valued function in M\D,
but its square is invariant under the monodromy. One can prove that
det2(J) depends on finite jets of the form ω and vanishes outside D only
for a proper subset in the jet space.
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For the second statement, it is clear that the intersection form induces
a non-degenerate antisymmetric pairing on ΘM\D. We first have to prove
that it extends over the discriminant. It suffices to show that it extends
over the smooth points of the discriminant because then an extension
over the whole of D exists by Hartog’s theorem. So let p0 be in Dreg.
Let l be a line through p0 in the ∂t0 -direction. Then for p ∈ l near p0, the
manifold Vp is a bouquet of µ n-spheres. We can choose a basis of the
cohomology of this manifolds, consisting of cycles γ1, γ2, . . . , γµ where
γ1 is the unique cycle vanishing at p0, and the intersection form is given
by I(γ1, γ2) = 1 and I(γi, γj) = 0 for i, j ∈ {3, . . . , µ}. Obviously, these
cycles can be extended to horizontal sections of the homology bundle
over l. Then it is known that the integrals

∫
γi
Pω can be expanded in a

power series in p− p0 of the form (see also lemma 1.22 on page 41)∫
γ1
Pω = (p− p0)

n+1
2
∑∞
i=0 Ai(p− p0)i∫

γ2
Pω = 1

2πi log(p− p0)(p− p0)
n+1

2
∑∞
i=0 Bi(p− p0)i

+
∑∞
i=0 Ci(p− p0)i∫

γj
Pω =
∑∞

i=0Di(p− p0)i ∀ i ∈ {3, . . . , µ}

where Ai, Bi, Ci, Di are locally constant sections of the cohomology bun-
dle over l. If we consider the Jacobi matrix J̃ of the k-th adjoint period
map, then the intersection form on M\D is given by J̃T IJ̃ where I is the
matrix of the intersection form in the cohomology bundle in a basis dual
to γi. Therefore, for k ≤ n+1

2 − 1, J̃T IJ̃ can be extended over Dreg and
hence over D. It remains to prove that it is closed and non-degenerate
near the origin. We have to prove that det(J̃T IJ̃) does not vanish, but
this is clear since det(J̃T IJ̃) = det2(J̃) det(I), I is locally constant and
the order of det2(J̃) equals µ(n− 2k− 1) which is zero for k = n+1

2 − 1.
From the fact that the intersection form I is locally constant it follows
that the induced form on M is closed. This finishes the proof.

Definition 1.24. Suppose that we are in the situation of the lemma, i.e.,
that we have a symplectic structure on M . Then let δ = µ

2 and denote
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by Bδ ⊂ D the closure of the set of points t ∈ M such that f−1(t) has
exactly δ A1-singularities. We call this subspace the µ/2-stratum.

Note however that is is unclear whether this space is always non-
empty. In the case of curves, it is itself a subspace of dimension µ/2,
thus non-empty (see the last remark of this section). Now we prove the
main theorem of this section, which is also due to Givental and Varchenko
([VG82]).

Theorem 1.25. The µ/2-stratum is a lagrangian subvariety with respect
to the symplectic structure of M .

Proof. Let p0 ∈ Bδreg and U ⊂ Bδreg an open neighborhood of p0 in Bδreg.
Identify Tp0M with M near p0 and set W := {q0 + s∂t0 | q0 ∈ U ; s ∈
[0, ε) ⊂ R≥0}. For ε and U small enough, the intersection (W\U) ∩D
where D is the discriminant will be empty. We proved in lemma 1.22 on
page 41 that the k-th adjoint period map is a section of H(k−1). By
choosing a trivialization of this bundle over W , the period map P kω can
be written as a family of maps Pt : U → H := Hn(Vp,C) where V
is a fixed Milnor fibre for p = p0 + s∂t0 ∈ W\U . In H we can chose
a special basis: There are δ cycles vanishing at p0 ∈ U . These cycles
vanish at different points of f−1(p0), so they do not intersect in H (for
s sufficiently small). Denote them by γ1, . . . , γδ. The intersection form
I was supposed to be symplectic, so there are complementary cycles
γ̃1, . . . , γ̃δ such that I(γi, γ̃j) = δij (and I(γi, γj) = 0, I(γ̃i, γ̃j) = 0).
Then we have∫

γi
Pω = (p− p0)

n+1
2
∑∞

i=0 Ai(p− p0)i = s
n+1
2
∑∞

i=0Ais
i

∫
γ̃i
Pω = log(s)s

n+1
2
∑∞
i=0 Bis

i +
∑∞

i=0 Cis
i

In particular, we get that
∫
γi
P kω (remember that k = n+1

2 − 1) is zero
on U ×{0} ⊂W , that is, P0(U) is zero on the cycles γi. Therefore, also
the intersection form I is zero on the image of P0(U). This implies that
the form induced on W (recall that it was defined on the discriminant
D by analytic continuation of the form on M\D) vanishes on U .

We make only two additional remarks on the singularities Bδ: First,
in the case of the A2n-singularity the spaces Bδ obviously coincide with
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the Bn’s defined above. It remains to prove that the map R carries
the intersection form to the form coming from the representation of
sl2. Givental proves this in an indirect way, in fact, he shows that the
symplectic form on P2n+1 relative to which the “first” open swallowtail
Σ2 is lagrangian is unique up to a constant factor. As R carries B2 to
Σ2, and B2 and Σ2 are lagrangian with respect to the two symplectic
forms, it follows that R is a symplectomorphism.

The second remark concerns the case n = 1, then M is the semi-
universal deformation space of a plane curve singularity (C, 0), and Bδ

is the subspace of points t such that the deformed curve Ct is the image
of a deformation of the normalization C̃ of the original curve. Bδ is
called δ-constant stratum, and the number δ is the usual δ-invariant of
the normalization n : C̃ → C. The normalization of Bδ (which is smooth
by work of Teissier [Tei77]) is the semi-universal deformation space of
the map n. In particular, in this case the space Bδ is non-empty.

1.6 Further examples
In this last section we mention very briefly other classes of lagrangian
singularities. Much more could be said on these examples, but a detailed
description is beyond the scope of this thesis.

1.6.1 Spectral covers of Frobenius manifolds
Frobenius manifolds have become a very active field of research in the
last years. Manifolds with multiplication on the tangent bundle and
compatible flat metric have first been introduced by K. Saito around
1980 (a good survey of Saito’s work is [Oda87]). The very definition of a
Frobenius manifold is due to Dubrovin (see, e.g., [Dub96]). We give the
definition of a Frobenius manifold and show how to associate to it in a
canonical way a lagrangian subvariety of the cotangent bundle.

Definition 1.26. Let M be a complex-analytic manifold and g a flat
metric, i.e. a symmetric and non-degenerate (2, 0)-tensor such that the
associated Levi-Civita connection ∇ is flat. Let a commutative and as-
sociative multiplication on the tangent bundle ΘM (that is, a symmetric
(2, 1)-tensor Ω) be given. We write X ◦Y := ΩX(Y ) for all X,Y ∈ ΘM .
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Suppose that we have a global unit field e. Let the following conditions
be satisfied:

• The metric is compatible with the multiplication, that is, g(X ◦
Y, Z) = g(X,Y ◦ Z) for X,Y, Z ∈ ΘM .

• ∇Ω = 0.

• The unit field e is horizontal, i.e., ∇e = 0.

Then (M, ◦, g, e) is called a Frobenius manifold. Suppose moreover that
there is a field E with LieE(◦) = d · ◦ and LieE(g) = D · g (d,D ∈ C,
d �= 0) and such that the endomorphism ∇E : ΘM → ΘM which sends a
vector field X ∈ ΘM to ∇XE is horizontal. Then we call (M, ◦, g, e,E)
a Frobenius manifold with conformal structure and E its Euler field.

Consider the symmetric algebra S•(ΘM ) of ΘM . This is a sheaf of
algebras which can be canonically identified with the subsheaf of OT∗M
consisting of functions on the cotangent bundle which are polynomial
with respect to the fibers of the projection T ∗M →M (see lemma B.2 on
page 175). The multiplication tensor can be seen as a morphism ΘM →
End(ΘM ). It extends by composition to the tensor algebra T •(ΘM ) and
descends due to commutativity to S•(ΘM ). The morphism

S•(ΘM ) −→ End(ΘM )

obtained in this way provides ΘM with a S•(ΘM )-module structure.
Therefore, the annihilator of ΘM as a S•(ΘM )-module defines an ideal
sheaf I ⊂ S•(ΘM ). Denote its extension to OT∗M also by I.

Definition 1.27. The subvariety L ⊂ T ∗M defined by I ⊂ OT∗M is
called the spectral cover (or the analytic spectrum) of the Frobenius man-
ifold M .

One remarks that the analytic spectrum only depends on the multi-
plication but not on the metric. This fact is used extensively in the first
part of [Her02], where manifolds (M, ◦, e,E) without metric are studied
(they are called F-manifolds). The following theorem relates Frobenius
manifolds with lagrangian subvarieties.
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Theorem 1.28. Let the multiplication ◦ be generically semi-simple, that
is, suppose that generically one can finds local coordinates (q1, . . . , qn)
on M such that ∂qi ◦ ∂qj = δij. Then the spectral cover L is a reduced
subvariety of the cotangent bundle T ∗M which is a lagrangian on its
smooth locus.

The proof can be found in [Aud98b] or [Aud98a]. Frobenius manifolds
with generically semi-simple multiplication are also called massive.

There are essentially two main classes of examples of Frobenius man-
ifolds: Quantum cohomology and unfolding of singularities. In the first
case, the manifold M is the total cohomology in even degree H2∗(X,C)
(one can define it on the whole cohomology using super-structures) of
a smooth projective manifold X (there is also a more general defini-
tion working for any symplectic manifold). The metric is simply the
intersection form, which is obviously flat. However, the product comes
from the so called genus zero Gromov-Witten invariants and is a multi-
plication of two elements α, β ∈ H2∗(X,C) depending on a third class
ξ ∈ H2∗(X,C). Therefore it defines a multiplication on the tangent bun-
dle of M . However, it is not true that the Frobenius structure defined
in this way is always massive, see [Aud98a] for a discussion of this fact.
One might ask whether for manifolds with multiplication on the tangent
bundle which is not semi-simple, the ideal defining the spectral cover (or
even its radical) is still involutive.

For unfoldings of singularities, the situation is in some sense inverse
to the one just described: The manifold M is the parameter space of
a semi-universal unfolding (just like in section 1.5 on page 36) and the
multiplication comes simply from the Kodaira-Spencer map of the un-
folding. In fact, it is true in general that the spectral cover determines
completely the multiplication. For a semi-universal unfolding, the spec-
tral cover is isomorphic to the critical space of the family. Therefore
it is a smooth space, and we are in the situation of the Arnold corre-
spondence between lagrangian mappings and families of functions (see
definition 1.6 on page 15). In particular, every germ of a Frobenius
manifold with smooth analytic spectrum is a product of semi-universal
unfoldings of hypersurface singularities.

However, the main difficulty to get a Frobenius structure on M in
this case is the construction of the metric. One uses in principle the
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same theory as described in section 1.5, that is, a period map which
identifies the tangent bundle of M with a certain locally free extension
H(k) of the cohomology bundle over M\D (D being the discriminant).
Apart from the intersection form, there is a second topologically defined
form in the fibres of the cohomology bundle, namely, the so called Seifert
form. In contrast to the intersection form, it is always non-degenerate
and symmetric. The main point now is to choose the right period map
which transfers this form to the tangent bundle (it needs to define a flat
metric on M). K. Saito’s constructed such a map which comes form
a section of H(k) called the primitive form. Its construction is rather
subtle and uses deep results from algebraic analysis. One can consult
the original articles of K. Saito as well as [Oda87] or [Her02] for a more
simplified treatment.

1.6.2 Special lagrangian singularities
Let us consider the complex linear space Cn as a real symplectic man-
ifold (thus, as R2n) with symplectic form given by ω =

∑n
i=1 dzi ∧ dzi,

where z1, . . . , zn are complex coordinates. Then we can speak about real
lagrangian submanifolds (or subvarieties) of Cn. On the other hand, the
presence of a complex structure makes it possible to distinguish certain
of these lagrangian submanifolds.

Definition 1.29. A special lagrangian submanifold of Cn is a (real)
n-dimensional submanifold L such that the symplectic form ω and the
imaginary part of the holomorphic n-form Ω := dz1 ∧ . . . ∧ dzn vanish
on L.

This definition comes from the so-called calibrated geometry, namely,
special lagrangian submanifolds are characterized by the condition that
they are area-minimizing, in the sense that they admit an orientation
such that at each point p ∈ L, we have Re(Ω)|TpL = vol |TpL, where vol
is the natural volume form given by the metric on Cn and the orientation
of L. This definition can be found in [HL82].

It should be noticed that in the above definition, the fact that L is a
submanifold of Cn is not really used. The only point is the existence of
a holomorphic n-form. This leads to the more general notion of a special
lagrangian submanifold of a Calabi-Yau manifold.
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Definition 1.30. Let X be a Calabi-Yau manifold of dimension n, that
is, a (complex) n-dimensional Kähler manifold which admits a non-
vanishing holomorphic differential form Ω of degree n. Then L ⊂ X
is called special lagrangian iff it is lagrangian with respect to the Kähler
form ω and iff Im(Ω)L = 0.

For other characterizations of Calabi-Yau manifolds, see the discus-
sion of applications of the T 1-lifting theorem in the first appendix, in
particular corollary A.25 on page 157. In [Joy00], an even more general
notion, that of an almost Calabi-Yau manifold is used.

We informally define singular special lagrangian subvarieties of Ca-
labi-Yau manifolds as varieties whose smooth locus is a special lagrangian
submanifold. The interest in these varieties comes from the so called
SYZ-conjecture (after Strominger, Yau and Zaslow): It is expected that
mirror symmetry can be expressed as a duality between two maps f :
M → B and f∗ : M∗ → B, where M and M∗ is a (mirror) pair of
Calabi-Yau 3-folds, B is a real three-dimensional manifold and the maps
f and f∗ are fibrations in special lagrangian three-tori over an open dense
subset B0. The main problem is to understand what happens over B\B0.
It is unknown in general what type of degenerations can occur. The
reader can consult [Joy00] and the reference therein for further details
concerning singularities of special lagrangians. We restrict ourselves here
to one simple example, which can already be found in [HL82].

Consider the following map

f : C3 −→ R3

(z1, z2, z3) 	−→ (|z1|2 − |z2|2, |z1|2 − |z3|2, Im(z1z2z3))

The zero fibre of this map (denote it by L0) can be described geomet-
rically as follows: Consider a three-dimensional (real) torus T 3, given
by the equations |zi|2 = 1 as lying in the five-dimensional sphere S5 of
radius

√
3. Then cut this torus with the subspace given by z1z2z3 = 1.

This yields a two- dimensional subtorus T 2 of T 3. Finally, take the cone
over this manifold inside R6, that is, the set of all real lines through the
origin and points of T 2. This cone is diffeomorphic to L0.

It follows from the construction that L0 has a unique singular point
at the origin in R6. We chose coordinates (x, y, z, w, p, q) of R6 such that
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z1 = x + iy, z2 = z + iw and z3 = p + iq, so that ω = dx ∧ dy + dz ∧
dw + dp ∧ dq and

Ω = dx ∧ dz ∧ dp− (dx ∧ dw ∧ dq + dy ∧ dw ∧ dp+ dy ∧ dz ∧ dq)

+i (dx ∧ dz ∧ dq + dx ∧ dw ∧ dp+ dy ∧ dz ∧ dp− dy ∧ dw ∧ dq)

Then L0 is given by the following equations:

f1 := z2 − p2 + w2 − q2

f2 := x2 − p2 + y2 − q2

f3 := zpy + xpw + xzq − ywq

Its singular locus (reduced structure) is given by the vanishing of

x2 + y2 p2 + q2 z2 + w2

pw + zq py + xq zy + xw
zp− wq xp− yq xz − yw

This shows that over R, the singular locus is a point whereas over C, it
is of dimension two. In fact, a primary decomposition shows that it is a
union of three components, given by the following ideals:

I1 = (w, z, py + xq, p2 + q2, xp− yq, x2 + y2)

I2 = (q, p, zy + xw, z2 + w2, xz − yw, x2 + y2)

I3 = (y, x, pw + zq, p2 + q2, zp− wq, z2 + w2)



Chapter 2

Lagrangian deformations

In this chapter we start to investigate deformation theoretic questions
for lagrangian singularities. To motivate constructions which will be in-
troduced later, we first discuss two simple cases, namely, that of smooth
real lagrangian submanifolds and that of plane curve singularities. Here
the deformation theory is considerably simpler to describe than in the
general case and more or less complete results are already known. In the
third section of this chapter, we introduce a general framework covering
all deformation problems associated to singular lagrangian subvarieties.
We work in the context of categories fibred in groupoids and deforma-
tion functors, which we explain in some detail in Appendix A. The aim
of the first two sections is to describe infinitesimal deformations in a
“naive” sense, that is, we consider deformations over the double point up
to an appropriate group action (which takes into account the symplectic
structure). The more intrinsic meaning of these deformations spaces as
tangent spaces of a functor will become clear in the general case discussed
in the third section and in the next two chapters.

2.1 Real lagrangian submanifolds

We state and prove a classical result concerning deformations of real
lagrangian submanifolds L ⊂ (M,ω). The setup is as follows: One
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starts with a symplectic C∞-manifold (M,ω) (which we suppose to be
simply connected for simplicity) and a (smooth) lagrangian submanifold
L ⊂M . Recall the following theorem (see, e.g., [Wei73]).

Theorem 2.1. There is an open (tubular) neighborhood U of L in M ,
an open neighborhood V of the zero section T ∗LL ⊂ T ∗L and a symplec-
tomorphism Φ : U → V such that Φ(L) = T ∗LL.

We denote by L(M,ω) the space of all lagrangian submanifolds of
M . This space can be equipped with a topology, see [Wei73]. Now we
consider a deformation of L in M , that is, a map γ : I → L(M,ω) where
I is an interval in R containing zero such that γ(0) = L and such that
γ(t) ⊂ U for all t ∈ I.

Using the symplectomorphism Φ, we get a one-parameter family βt of
sections of T ∗L, that is, a family of differential forms on L. Moreover, any
γt ∈ L(M,ω) is lagrangian, meaning that β∗t ω = 0, but β∗t ω = β∗t (dα) =
dβt where α is the Liouville form on V ⊂ T ∗L. Therefore, we obtain a
family of closed forms on L. Suppose that βt are exact one forms, i.e.,
that there is a family of functions Ft : L → R with dFt = βt. Then the
flow of the (time-dependent) hamiltonian field XFt defines a family of
symplectomorphisms of V , thus, a family of symplectomorphisms of U
trivializing the family γt. This shows that the space of deformations of
L coincides with the space of maps Φ̃ from I to H1(L,R), the first de
Rham cohomology group of L. In particular, infinitesimal deformations
are given by vectors ∂

∂t Φ̃t=0. Therefore we have

Theorem 2.2. The infinitesimal deformation space of a smooth la-
grangian submanifold L ⊂M is naturally isomorphic to H1(L,R).

2.2 Curve singularities

In this section, we will discuss another simple example of lagrangian de-
formations where deformation spaces can be calculated “by hand”: germs
of curves in the plane (seen as a symplectic manifold by any volume form
ω ∈ ΩK2,0). Such a curve is obviously a lagrangian subspace and more-
over, any deformed curve is still lagrangian. However, the automorphism
group acting is the symplectic group which is strictly smaller than the
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usual automorphism group (the one used for V -equivalence, also called
contact equivalence). Therefore, it is natural to expect the space of (in-
finitesimal) deformations of a lagrangian curve singularity to be bigger
then the usual T 1. This is indeed the case and can be seen as follows:
Denote the singularity by (C, 0) ⊂ (K2, 0) and suppose it is given by
f ∈ OK2,0. Then any deformation over K[ε]/ε2 is given by a equation of
type f + εf̃ with f̃ ∈ OK2,0. But any f̃ ∈ (f) is a trivial deformation
because then the ideals (f) and (f + εf̃) are the same in OK2,0[ε]/ε2.
So deformations are parameterized by OC,0. But some of them are still
trivial, namely, those induced from hamiltonian vector fields in K2. The
space of these fields is again parameterized by OC,0 since elements from
(f) give hamiltonian fields tangent to C. We see that the space of in-
finitesimal lagrangian deformations of the curve germ (C, 0), which we
denote by T 1

LagDef (C, 0) is given as the cokernel of the map

δ : OC,0 −→ OC,0

h 	−→ {h, f}

As we have a canonically given non-degenerate two-form ω, there is an
isomorphism OK2,0

∼= Ω2
K2,0 which does not depend on any choice. The

Poisson bracket on OK2,0 of two elements h1, h2 corresponds under this
isomorphism to dh1 ∧ dh2. Therefore, we get

T 1
LagDef (C, 0) ∼=

Ω2
K2,0

fΩ2
K2,0 + df ∧ dOK2,0

(2.1)

This last quotient is a quite familiar object in singularity theory, if we
see f as a mapping germ f : (K2, 0) → (K, 0), then Ω2

K2,0/df ∧ dOK2,0 is
the germ of sections of a free OK,0-module, called the Brieskorn lattice
of f and denoted by ′′H . The rank of this module equals µ, the Milnor
number of the singularity f . Thus we obtain

Theorem 2.3. The space of infinitesimal lagrangian deformations of a
germ of a plane curve (C, 0) given by an equation f ∈ OK2,0 up to sym-
plectomorphisms of K2 is canonically isomorphic to the zero fibre of the
Brieskorn lattice of f . In particular, T 1

LagDef (C, 0) is a µ-dimensional
vector space.
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This result is remarkable in several ways: First, the usual infinitesi-
mal deformation space T 1

Def (C, 0) is of dimension τ , the Tjurina number
of (C, 0). Recall that τ = dimK OK2,0/ (f, ∂x1f, . . . , ∂xnf). We have the
equality τ = µ iff f is quasi-homogeneous with positive weights (see
[Sai71]). In general, the Milnor number is greater than the Tjurina
number. In that case we see that the space of symplectic structures
modulo symplectomorphisms which leave the curve C invariant is of di-
mension µ−τ . This also follows from results of Givental (see [Giv88]), in
fact, he proves that (in the complex case), there is at most one symplec-
tic structure ω (up to symplectomorphisms fixing C) for a given class
[α] ∈ H1(Ω̃•C) such that dα = ω and ωCreg = 0.

2.3 The lagrangian deformation functor
Motivated by the two above examples, we will now define a very general
framework which covers different deformation problems associated to la-
grangian subvarieties. More precisely, consider a mapping (which might
not be an embedding) i : X → M of a (not necessarily smooth) reduced
analytic space X into a symplectic manifold (M,ω) over K, such that
the image is lagrangian, that is, such that i∗ω = 0 where we see i∗ω as
an element of Ω̃2

X , the module of Kähler two-forms on X modulo torsion
(see also the discussion on page 20). Denote by Art the category of
Artin rings.

Definition 2.4. Let a mapping i : X →M as above be given. We define
a category co-fibred in groupoids over Art (denoted by LagIsoX/M ) as
follows: Its objects are diagrams of the following type

M

��

� � �� M × S

��

X

i ������
��

��

XS
iS

�����

f

��
{∗} �� S

with S ∈ Artopp, f : XS → S flat and
(
pr ◦ ĩ
)∗
ω = 0 ∈ Ω̃2

XS/S
,



2.3 The lagrangian deformation functor 55

where pr : M × S →M is the projection. Morphisms (over a morphism
S′ → S in Artopp) are the obvious (huge) commutative diagrams con-
necting two of the above diagrams, where the map M × S′ → M × S
is fibrewise symplectic and induces the identity over {∗}. It is easily
checked that LagIsoX/M is indeed a category co-fibred in groupoids. As
explained in Appendix A (see section A.1.2 on page 138), we get a functor
LagIsoX/M ∈ Fun by associating to S ∈ Artopp the set of isomorphism
classes of elements of LagIsoX/M (S).

The name LagIso is chosen according to the two particular defor-
mation problems covered by this functor: deformations of lagrangian
subvarieties and of isotropic mappings, see definition 2.6 on the next
page.

In order to fit into the general pattern as described in Appendix A,
we need to check some technical properties of the functor LagIsoX/M .

Lemma 2.5. LagIsoX/M satisfies the axioms (H1) and (H2) from def-
inition A.7 on page 141 and also axiom (H5) from definition A.19 on
page 152.

Proof. (H5) obviously implies (H1). Moreover, once we have proved
(H5), the bijectivity in (H2) follows immediately as in the prove for
the case of flat deformations in [Art76]. We use the prove of (H5) in
[Gro97]. So let us be given surjections A′ → A and A′′ → A in Art and
deformations (XA′ , iA′) ∈ LagIsoX/M (A′), (XA′′ , iA′′) ∈ LagIsoX/M (A′′)
and (XA, iA) ∈ LagIsoX/M (A) with

OXA′ ⊗A′ A = OXA′′ ⊗A′′ A = OXA

and such that the OM×R-module structure of OXR (R = A,A′, A′′)
representing the morphism iR is compatible with these tensor products.
Then we set

τA′,A′′,A (XA′ , XA′′) := X̃ :=
(
X,OXA′ ×OXA

OXA′′

)
We see that there is a natural algebra morphism ĩ∗ : OM×Ã → OX̃ ,
where Ã := A′′×AA′ (because OM×Ã ∼= OM×A′′ ×OM×A OM×A′). Then
obviously ĩ∗ ◦ (pr)∗ω = 0, because this pullback is a relative form which
is zero on the factors of the fibred sum.
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The following two chapters are devoted to study special cases of the
functor LagIso. For notational convenience, we define functors which
distinguish these two cases.

Definition 2.6. Let (M,ω) a 2n-dimensional symplectic manifold over
K.

• Let L ⊂ M be a lagrangian subvariety, given by an involutive
ideal sheaf I ⊂ OM . Then we denote by LagDef L the functor
LagIsoL/M associated to the embedding i : L ↪→ M . The elements
of LagDef L(S) for S ∈ Artopp are isomorphism classes of de-
formed ideals Ĩ ⊂ OM×S which are involutive with respect to the
Poisson-structure on M × S up to the action of relative symplec-
tomorphisms in M × S.

• Consider an isotropic mapping i : X → M (i.e. i∗ω = 0) where
X is an open subset of Kn. Then we let IsoDef i := LagIsoX/M
be the functor of deformations of the mapping i. IsoDef i(S) are
deformed isotropic maps ĩ : X×S → M ×S (i.e. ĩ∗ ◦pr∗ω = 0) up
to the action of the group which is the semi-direct product of the
group AutS(X × S) with SympS(M × S).

It should be clear that the functor LagIso reduces in the two particu-
lar cases to the functors LagDef and IsoDef : in the first case, if i : L ↪→
M is an embedding, then by flatness a deformation iS : LS → M × S
of this map will still be an embedding, that is, LagIsoL/M consists of
deformations of the subspace L inside M . On the other hand, if X is
open in Kn, it does not deform at all, so elements of LagIsoX/M are
isomorphism classes of mappings i : X × S →M × S.

We remark that one can of course define local versions of these func-
tors, that is one starts with germs of objects of the above type. This is
indeed the case that we will consider mainly in the next two chapters.
However, we can always work with the functors as defined by supposing
that L, M and the mapping i are small representatives for the given
germs (L and M have to be Stein in the complex case).

When defining the functor LagIsoX/M for a general mapping i : X →
M , one may ask whether there are such maps where X is not smooth and
i is not an embedding. In the following theorem, we give an example.
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Theorem 2.7. Fix a positive integer n and let (X, 0) ⊂ (K3, 0) be the
three-dimensional An-singularity, given by the equation xz − yn+1 = 0.
Then the map germ

β : (K3, 0) −→ (K4, 0)
(x, y, z) 	−→ (x, y, zy, xy)

defines an isotropic map (X, 0) → (K4, 0), i.e., we have (β∗ω)|Xreg
= 0.

Proof. Consider the following commutative diagram of map germs

(K2, 0)

α

���
��

��
��

��
ϕ �� (K4, 0)

(K3, 0)

β

�����������

where
α : (K2, 0) −→ (K3, 0)

(s, t) 	−→ (sn+1, st, tn+1) =: (x, y, z)

is the normalization of (X, 0) and

ϕ : (K2, 0) −→ (K4, 0)
(s, t) 	−→ (sn+1, tn+1, stn+2, sn+2t)

is the composition. Then ϕ∗ω = 0. This proves the theorem.

There is one deformation problem we are going to consider which is
not covered by the above formalism, namely, deformations of an inte-
grable system. In principle this problem can also be seen as a special
version of the functor LagIso by using the graph construction, but this
needs supplementary effort to be written down properly, without being
very useful in applications. Therefore, we will define an extra func-
tor, adapted for this problem. The relation with the deformation of
lagrangian submanifolds via the graph construction will become clear
later (see lemma 3.27 on page 81).

The definition of the deformation functor for an integrable system is
rather simple: Let us consider a mapping

F = (f1, . . . , fn) : M −→ U ⊂ Kn
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such that {fi, fj} = 0 for all i, j. We call a map

F̃ = (f̃1, . . . , f̃n) : M × S −→ U

with F̃ (p,q, 0) = F (p,q) an unfolding of F over S. We have a natural
group action on the set of all unfoldings of F over S, namely, let Symp2n

S

be the group of all S-symplectomorphisms of M×S (i.e., the group of all
families of symplectomorphisms of M , parameterized by S). This defines
a groupoid HamDefF (S) and one sees that HamDefF becomes a cat-
egory co-fibred in groupoids. Therefore, we obtain a functor HamDef F
by sending S ∈ Artopp to Iso (HamDefF (S)).

As the spaces involved here are smooth and therefore deform trivially,
it is easy to check the following fact.

Lemma 2.8. The functor HamDef F satisfies conditions (H1), (H2) and
(H5).

We will see that this deformation functor is much simpler to handle
than the functor LagDef . However, it is only of theoretical interest
because its tangent space is almost never finite-dimensional.



Chapter 3

Lagrangian subvarieties

The first special case of the general lagrangian deformation problem de-
scribed in the last chapter is concerned with lagrangian subvarieties L
embedded in a symplectic manifold M . It turns out that the deformation
theory of L is related to a “symplectic analogue” of the de Rham com-
plex, namely, a sheaf complex on L which coincides with the de Rham
complex on the smooth locus of L. This construction is a special case of
the general formalism of Lie algebroids, which we introduce in the first
section.

3.1 Lie algebroids

We give the definition of a Lie algebroid. We treat directly the rela-
tive case, i.e. Lie algebroids over morphisms X → S of complex spaces.
Studying deformations of lagrangian families turns out to be quite use-
ful (like in any deformation theory), and the relative version of the la-
grangian de Rham complex can be directly deduced from Lie algebroids
in the relative setting. This complex, defined for modules over arbitrary
Lie algebroids is an analogue of the de Rham complex in (ordinary)
D-module theory (see Appendix B), namely, for a Lie algebroid g one
constructs a non-commutative algebra Dg of generalized differential op-
erators and defines DR(M) as RHomDg(OX ,M) for any module M
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over g.

3.1.1 Lie algebroids and differential operators
First we define Lie algebroids and generalized differential operators in-
dependently from each other. Both of them form categories in a natural
way. We show that there is a pair of adjoint functors between these
categories. The material of this section is essentially taken from [Käl98],
[BB93] and [Rin63].

Definition 3.1. Let S be an analytic space over K, X → S a morphism
of analytic spaces and g a sheaf of OS-Lie algebras, that is, a sheaf
of OS-algebras satisfying the usual relations for Lie algebras. Suppose
moreover that g is a coherent sheaf of OX-modules together with a fixed
morphism of OS-Lie algebras (the structure morphism, also called anchor
by various authors)

α : g −→ ΘX/S = DerOS (OX ,OX)

such that for all δ1, δ2 ∈ g and f ∈ OX we have

[δ1, fδ2] = α(δ1)(f)δ2 + f [δ1, δ2]

Then we call g a Lie algebroid relative to the morphism X → S (or Lie
algebroid over X/S for short). Lie algebroids over X/S form a category:
a homomorphism of OX-modules and OS-Lie algebras is a morphism of
Lie algebroids iff it commutes with the structure morphisms.

As usual, most interesting from the geometric viewpoint is the case
OS = K, then we have a Lie algebroid on X . The basic Lie algebroid
is the (relative) tangent sheaf itself. For a smooth variety X , the tan-
gent sheaf ΘX and the structure sheaf OX generate a non-commutative
algebra, the ring of differential operators DX (see Appendix B for some
aspects of D-module theory, in particular lemma B.1 on page 174). In
the following, we define differential operators associated to any Lie alge-
broid.

Definition 3.2. Let X be an analytic space over S. Then a ring of
differential operators on X/S is a (non-commutative) OS-algebra D to-
gether with a filtration

0 ⊂ D(0) ⊂ D(1) ⊂ . . . ⊂ D
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such that D(m)D(n) ⊂ D(m + n), ∪∞i=0D(i) = D and such that the
associated graded ring

gr(D) := ⊕∞i=0D(i)/D(i− 1)

is a commutative OS-algebra. Moreover, we require that there is an
inclusion i : OX → D(0) such that

[i(OX),D(n)] ⊂ D(n− 1)

One can define the category of differential operators on X/S where
morphism are algebra homomorphisms respecting the filtrations. Then
to any ring D we associate a Lie algebroid g by setting

g := {δ ∈ D(1) | [δ, i(OX)] ⊂ i(OX)}

Here the Lie bracket is the usual commutator of elements on D (one
has to check that g is stable under this commutator). The structure
morphism α : g → ΘX/S is defined as α(δ)(f) := i−1([δ, f ]) for δ ∈
g, f ∈ OX . That this defines in fact a derivation will be proved in a
more general context below (see theorem 3.6 on page 63). We get a
functor L from the category of differential operators to the category of
Lie algebroids. The following construction gives a left adjoint to L.

Let a Lie algebroid g be given. Define the OX -module g̃ := OX ⊕ g,
which becomes a Lie algebra under the following bracket

[ , ] : g̃ × g̃ → g̃
(h1, g1), (h2, g2) 	−→ (α(g1)(h2) − α(g2)(h1), [g1, g2])

Consider the universal enveloping algebra UOS(g̃) of g̃ over OS , i.e. the
quotient of the tensor algebra T •OS

(g̃) by the ideal generated by x̃⊗ỹ−ỹ⊗
x̃− [x̃, ỹ] for x̃, ỹ ∈ g̃. Inside UOS (g̃) we have the subalgebra of “elements
from g and OX ”, that is, the subalgebra generated by the image of g̃
in UOS(g̃). Denote this subalgebra by U+

OS
(g̃). Finally, we have to take

into account the OX -module structure of g. Therefore we define Dg to
be the quotient of U+

OS
(g̃) by the ideal generated by elements of the form

h⊗ x̃−hx̃, where h ∈ OX and x̃ ∈ g̃. The ring Dg is canonically filtered:
We define a grading on the Lie algebra g̃ by setting deg(g) = 1 and
and deg(h) = 0 for g ∈ g, h ∈ OX . This induces a filtration by order
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on T •OS
(g̃) and thus on Dg. We denote the associated graded ring by

gr(Dg). It can be checked that this ring is commutative.

Lemma 3.3. The functor D from Lie algebroids to differential operators
defined in this way is left adjoint to L.

Proof. Let g be a Lie algebroid and D any ring of differential operators
on X/S. Then any morphism

Φ : g −→ L(D)

of Lie algebroids extends first uniquely to a morphism of Lie algebras
Φ̃ : g̃ → L̃(D) and then to a OS-algebra homomorphism

Φ̂ : T •OS
(OX ⊕ g) −→ D

(h1, g1) ⊗ (h2, g2) 	−→ h1h2 + h1Φ(g2) + h2Φ(g1)
+α(g1)(h2) + Φ(g1)Φ(g2)

where gi ∈ g and hi ∈ OX . Then it is easy to see that Φ̂ vanishes on
elements of the form

(h1, g1) ⊗ (h2, g2) − (h2, g2) ⊗ (h1, g1)−
(α(g1)(h1) − α(g2)(h1), [g1, g2]) and

h⊗ (h1, g1) − (hh1, hg1)

and thus defines a unique algebra morphism Dg → D.

We proceed to imitate some of the known constructions and objects
for ordinary differential operators. Denote by S•OX

(g) the symmetric
algebra over OX of g. On this algebra we have a Poisson-bracket, defined
by the bracket on g and the Leibniz rule. More precisely, denote by j
the embedding g ↪→ S•OX

(g) and define

{j(x), j(y)} = j([x, y])
{f, g} = 0

{j(x), g} = α(x)g

for all x, y ∈ g and f, g ∈ OX . Remark that j(g) generates S•OX
(g) as

an algebra over OX , therefore the bracket is well defined by the above
definitions and the Leibniz rule.
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On the other hand, the general theory of filtered rings (see [Gab81]
and [Bjö93]) shows that the graded ring gr(Dg) also carries a natural
Poisson bracket (which is defined essentially in the same way). Then the
morphism

g −→ gr1(Dg) ↪→ Dg

extends to a morphism of Lie algebras (Poisson algebras) S•OX
(g) −→

gr(Dg) which is surjective by construction. The following lemma (which
is in fact a generalization of the Poincaré-Birkhoff-Witt theorem) is
proved in [Rin63].

Lemma 3.4. Let g be locally free over OX . Then the natural morphism
S•OX

(g) −→ gr(Dg) is an isomorphism.

A basic question concerns the coherence of Dg, gr(Dg) and S•OX
(g).

The methods to prove coherence are the same as for ordinary differential
operators, an indication of this fact is found in [Käl98].

Lemma 3.5. Dg, gr(Dg) and S•OX
(g) are coherent sheaves of rings.

3.1.2 Modules over Lie algebroids
A module over a Lie algebroid is intuitively an OX -module M with
an action of g on M, i.e., a bracket [ , ] : g × M → M such that
[g, fm] = f [g,m]+α(g)(f)m and [fg,m] = f [g,m] for all g ∈ g, f ∈ OX

and m ∈ M. This can be reformulated in the following way.

Theorem+Definition 3.6. Consider a faithful OX -module M, that is,
suppose that the natural morphism

i : OX −→ EndOX (M)
h 	−→ (m 	→ h ·m)

is injective.

• The linear Lie algebroid associated to M is defined as follows:
Denote by D(M)(1) the subsheaf of EndOS(M) of all operators δ
such that [δ, EndOX (M)] ⊂ EndOX (M). Then set

cX(M) := {δ ∈ D(M)(1) | [δ, i(OX)] ⊂ i(OX)}
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The Lie bracket on cX(M) is just the commutator (well defined due
to the Jacobi identity), whereas the structure morphism is α(δ) :=
(f 	→ i−1([δ, f ])). Then (cX(M), [ , ], α) is a Lie algebroid.

• Let g be a Lie algebroid and M a (faithful) OX-module. Then a
structure of a left g-module on M is by definition a morphism of
Lie algebroids g → cX(M).

Proof. We have to show that the structure morphism is well defined,
i.e. that α(δ) is really an OS-derivation of OX . Let f1, f2 ∈ OX and
denote by φ1, φ2 the multiplication with f1, f2, respectively. Moreover,
let hk := α(fk) = i−1([δ, fk]) (k = 1, 2). Then, as [δ, i(OX)] ⊂ i(OX),
we have

[δ, φ1]φ2 = φ2[δ, φ1]

that is
δ(f1f2m) − f2δ(f1m) − f1δ(f2m) + f1f2δ(m) = 0

for all m ∈ M. Moreover

f2δ(f1m) − f2f1δ(m) = f2h1m
f1δ(f2m) − f1f2δ(m) = f1h2m

These three equations give

δ(f1f2m) − f1f2δ(m) = [δ, f1f2]m = h1f2m+ f1h2m

This proves α(f1f2) = α(f1)f2 + f1α(f2). On the other hand, for any
δ ∈ EndOX (M) we have δ(sm) = sδ(m) for s ∈ OS and m ∈ M,
therefore α(δ)(s) = 0. So we get α(δ) ∈ DerOS (OX ,OX).

Remark that a left g-module as defined is nothing else than a left
module over Dg. There is also a corresponding definition of a right g-
module, but we will not give it here. The structure sheaf OX is always
a (left) module over the Lie algebroid g, because cX(OX) = ΘX and the
structure morphism α : g → ΘX is a morphism of Lie algebroids.

Very much like for ordinary differential modules, one defines coher-
ent left g-modules to be those which are coherent over Dg. This condi-
tion turns out to be equivalent to the local existence of good filtrations.
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Therefore one can define the graded module gr(M) of a coherent g-
module M. It is a gr(Dg)-module (in particular, it is a module over
S•(g)). The radical of the annihilator of gr(M) is independent of the
good filtration chosen. Suppose in the following that g is a locally free
OX -module. Then there is a linear space over X , called Spec(S•(g))
(it is the spectrum of the algebra S•(g) in the algebraic case) and a
projection p : Spec(S•(g)) → X such that p∗OSpec(S•(g)) = S•(g). The
space Spec(S•(g)) replaces the cotangent bundle in usual D-module the-
ory where X is smooth, in the sense that we have a Poisson bracket on
S•(g) and that the following holds.

Lemma 3.7. Denote by J (M) ⊂ S•(g) the radical of the annihilator of
the S•(g)-module gr(M). Then {J ,J } ⊂ J . The subvariety defined by
J (M) is called the singular support or the characteristic variety of the
coherent g-module M.

The proof follows from Gabbers theorem (see [Gab81]). We remark that
in contrast to the case g = ΘX for smooth X , it is not clear whether
there is any dimension estimate of the characteristic variety that can
be deduced from this result. The main difficulty is that on the space
Spec(S•(g)) one does not have a symplectic structure so it makes no
sense to speak about coisotropic subvarieties and one cannot conclude
that dim(char(M)) ≥ dim(X). For the same reasons, the proof of the
fact that the homological dimension of the ring DCn,0 equals n does not
immediately generalize to the rings Dg,0.

3.1.3 The de Rham complex

In the theory of ordinary DX -modules (for X smooth) we can associate
to any DX -module M its de Rham-complex, which generalizes the de
Rham complex of differential forms. A similar construction exists for
modules over general Lie algebroids. We start with a slightly more gen-
eral situation by considering a Lie algebroid g over X/S, an OX -module
M and a morphism of OX -modules β : g → cX(M). Denote Dg by D
for short.

Definition 3.8. Set Cp(g,M) := HomOX (
∧p

g,M) and define a differ-
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ential δ : Cp(g,M) → Cp+1(g,M):

(δ (φ)) (h1 ∧ . . . ∧ hp+1) :=∑p+1
i=1 (−1)i β (hi)φ

(
h1 ∧ . . . ∧ ĥi ∧ . . . ∧ hp+1

)
+

∑
1≤i<j≤p+1

(−1)i+j−1 φ
(
[hi, hj ] ∧ h1 ∧ . . . ∧ ĥi ∧ . . . ∧ ĥj ∧ . . . ∧ hp+1

)
Lemma 3.9. If M is a g-module, i.e. if β is a morphism of Lie al-
gebroids, then δ2 = 0 and we call the complex (C•(g,M), δ) defined in
this way the de Rham complex of the Lie algebroid g with values in M.
Moreover, if g is OX-projective, this complex can be canonically identi-
fied with RHomD(OX ,M).

Proof. Consider the following left D-module:

Sp pD := D ⊗OX

p∧
g

with the map s : Sp pD → Sp p−1
D

s (P ⊗ h1 ∧ . . . ∧ hp) :=∑p
i=1 (−1)i Phi ⊗ h1 ∧ . . . ∧ ĥi ∧ . . . ∧ hp+1+∑

1≤i<j≤p
(−1)i+j P ⊗ [hi, hj] ∧ h1 ∧ . . . ∧ ĥi ∧ . . . ∧ ĥj ∧ . . . ∧ hp

The terminology is chosen according to ordinary DX -module theory for
smooth X : in that case there is a resolution on the left DX -module
OX called Spencer complex which is defined just as above in our more
general setting.

One has first to check that the map s is well defined, then one calcu-
lates its square. Both of these calculations are quite nasty but straight-
forward. We conclude that (Sp •D, s) is a complex. This already suffices
to prove the first statement of the lemma: If M is a D-module, then
we can apply the functor HomD(−,M) to the Spencer complex (in our
extended sense). But obviously

HomD(Sp pD,M) = HomD(D ⊗OX

p∧
g,M) ∼= HomOX (

p∧
g,M)

and the differential δ of the de Rham complex is the dual of the differ-
ential s from the Spencer complex under the functor HomD(−,M).
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For the second statement, one needs to show that Sp •D is a resolution
of OX (viewed as a D-module) in case that g is OX -projective. This is
first proved in the case that g is locally free over OX , just like in ordinary
D-module theory (see [Meb89]), namely, one considers a filtered version
of the Spencer complex and deduces the acyclicity from the exactness
of its associated graded complex, which is in fact a Koszul complex of
the generators of g. The general case where g is only OX -projective can
then be deduced from this more special one. All these arguments are
explained in detail in [Rin63].

Consider now the special case where M = OX with its natural struc-
ture of a left g-module mentioned above. OX is an algebra, this allows
us to construct a (graded) algebra structure on the complex C•(g,OX)
similar to the product of differential forms.

Definition 3.10. Denote by ∧ the following product:

Cp(g,OX) × Cq(g,OX) −→ Cp+q(g,OX)
(Φ,Ψ) 	−→ Φ ∧ Ψ

with

(Φ ∧ Ψ)(f1 ∧ . . . ∧ fp+q) =∑
I
∐
J={1,...,n}

i1<...<ip, j1<...<jq

sgn(I, J) · Φ(fi1 ∧ . . . ∧ fip) · Ψ(fj1 ∧ . . . ∧ fjq)

The sign is defined as

sgn(I, J) := sgn

(
1, . . . . . . . . . . , p+ q

i1, . . . , ip, j1, . . . , jq

)
Theorem 3.11. The triple (C•(g,OX), δ,∧) is a differential graded al-
gebra (see definition A.2 on page 136). More precisely, we have for any
Φ ∈ Cp, Ψ ∈ Cq and Γ ∈ Cr:

1. Φ ∧ Ψ = (−1)deg(Φ)·deg(Ψ) · Ψ ∧ Φ
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2. (Φ ∧ Ψ) ∧ Γ = Φ ∧ (Ψ ∧ Γ)

3. δ(Φ ∧ Ψ) = δ(Φ) ∧ Ψ + (−1)deg(Φ) · Φ ∧ δ(Ψ)

Proof. The first two points are trivial, while the third has to be checked
by an explicit calculation.

Up to this point, we have developed the theory of Lie algebroids in
some analogy to ordinary D-module theory. In particular, the complex
C•(g,M) is a generalization of the de Rham complex of a D-module. The
case M = OX is rather trivial in D-module theory, it gives the usual de
Rham complex of the manifold X . However, if X is singular, then there
is the de Rham complex of Kähler differential forms (see the definition
on page 18), which contains important information on the structure of
the singularities. The complex C•(g,OX) is related to the complex of
Kähler differentials as the following lemma shows. Note that we have to
consider the complex Ω•X/S of relative differential forms.

Lemma 3.12. Consider a Lie algebroid g over X/S. Then there is a
morphism of differential graded algebras J : Ω•X/S → C•(g,OX).

Proof. First we dualize the structure morphism α : g → ΘX/S to get

α∗ :
(
ΩX/S
)∗∗ → g∗ = C1(g,OX)

Then we define J to be the composition α∗ ◦ ι, where ι : ΩX/S →(
ΩX/S
)∗∗ is the canonical morphism. The previously defined product

structure on C•(g,OX) allows us to define an extension of J to the whole
de Rham complex by setting

J(ω1 ∧ . . . ∧ ωp) := J(ω1) ∧ . . . ∧ J(ωp)

This shows directly that the morphism J is a morphism of graded alge-
bras. But it is even a morphism of DGA’s: It suffices to verify that the
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diagram
Ω1
X/S

J

��

C0(g,OX) = OX = Ω0
X/S

d

����������������

δ
����������������

C1(g,OX)

(3.1)

is commutative. This is obvious.

3.2 The lagrangian Lie algebroid
After these generalities, we return to lagrangian singularities. We asso-
ciate a Lie algebroid to any family of lagrangian subvarieties L → S and
consider its de Rham complex with coefficients in OL. So let us be given
a flat family

L � � ��

f

��

M × S

pr2

����
��

��
��

��

S

of lagrangian varieties over a base S. Recall that this means in particular
that L is a reduced analytic subspace in the manifold M × S, given by
an ideal sheaf I such that {I, I} ⊂ I ({ , } is the Poisson structure on
M × S induced by the symplectic form on M) and such that each fibre
(one is sufficient) Ls has dimension n (where dim(M) = 2n).

Lemma 3.13. Let g := I/I2 be the conormal sheaf of L. Then g is
a Lie algebroid on L/S which is isomorphic to ΘL/S on (L/S)reg, the
regular locus of f : L → S.

Proof. We have to define the Lie bracket and the structure morphism.
The bracket is obviously induced by the Poisson bracket on M × S,
more precisely, we have {Ii, Ij} ⊂ Ii+j−1 (this is rapidly verified by
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induction), thus there is a well defined bracket { , } : g× g → g. By the
same argument, there is a bracket g ×OL → OL such that {g, f · h} =
{g, f}h+f{g, h} for g ∈ g and f, h ∈ OL and {g, f} = 0 for f ∈ OS . This
defines the structure morphism α : g → ΘL/S by setting α(g) = {g,−}.
α is a Lie algebra morphism, this follows immediately from the Jacobi
identity in OM×S .

Consider again the morphism J : ΩL/S → (I/I2)∗ from above.
This morphism is an isomorphism on (L/S)reg, because both ΩL/S and
(I/I2)∗ are locally free away from the singularities and can be identified
with the sheaf of sections of the relative cotangent and conormal bundle.
But these are canonically isomorphic because the regular locus of each
fibre Ls is lagrangian in M×{s}, see theorem 2.1 on page 52. Moreover,
on (L/S)reg we also have an isomorphism of ΩL/S with (ΩL/S)∗∗. This
shows that the structure map is an isomorphism on (L/S)reg.

Denote by (C•L/S , δ,∧) the de Rham complex of the Lie algebroid g

with values in OL (with its DGA-structure). It is useful to write down
explicitly the first terms of this complex:

C0
L/S −→ C1

L/S −→ C2
L/S

‖ ‖ ‖
OL −→ HomOL(g,OL) −→ HomOL(

∧2
g,OL)

h 	−→ (f 	→ {f, h})

φ 	−→ f1 ∧ f2 	→ φ({f1, f2})
−{f1, φ(f2)} − {φ(f1), f2}

The product ∧ : C0
L/S × CpL/S → CpL/S is just the multiplication coming

from the OL-module structure on CpL/S , whereas∧
: C1
L/S × C1

L/S −→ C2
L/S

(φ, ψ) 	−→ (f1 ∧ f2 	→ φ(f1)ψ(f2) − φ(f1)ψ(f2))

Lemma 3.14. The morphism J : Ω•L/S → C•L/S of DGA’s is an isomor-
phism on (L/S)reg. Its kernel complex equals Tors(Ω•L/S) consisting of
the torsion subsheaves of Ω•L/S.
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Proof. J1 : Ω1
L/S → C1

L/S was seen to be an isomorphism on (L/S)reg,
this is obviously true for the whole morphism J .

The sheaves CpL/S are of “Hom”-type, hence torsion free and therefore
Tors(Ω•L/S) lies in the kernel of J . Conversely, any kernel element is
torsion, because J is an isomorphism at a general point.

We note a simple observation concerning the vanishing of the la-
grangian de Rham complex.

Lemma 3.15. Let f : L → S a lagrangian family of relative dimension
n and x ∈ L a point. Then the germ of CpL,x vanishes for all p > n.

Proof. Let L := Lf(x) the fibre of f over f(x). Then ΩpL,x = 0 for all
p > n and x ∈ Lreg. Therefore, CpL is concentrated on the singular locus
of L which is a proper subspace (L is reduced). But the sheaves CpL are
torsion free, which leads immediately to CpL,x = 0.

3.3 Applications to deformation theory

Using the technical tools introduced so far, we state and prove our results
on the deformation theory of lagrangian subvarieties. The main point
is the description of the infinitesimal deformation space of a lagrangian
singularity (L, 0) ⊂ (M, 0) as the first cohomology of the complex C•L,0.
However, it will also be of importance to consider the relative case, that
is, the relative tangent space of the functor LagDef for a lagrangian
family L → S. This is not more involved, therefore we treat directly this
case, which includes the absolute one as usual (take S = {pt}). Given
a lagrangian subvariety L ⊂ M , we conjecture that its infinitesimal
deformations are controlled by the global lagrangian de Rham complex.
This can be proved in some special cases.

3.3.1 Infinitesimal deformations

We consider a lagrangian family f : L ↪→ M × S � S such that each
fibre Ls is a small contractible representative of the germ (Ls, 0) ⊂ (M×
{s}, (0, s)) (which we suppose to be Stein for K = C).
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Theorem 3.16. The relative tangent space of LagDef L/S is the sheaf
f∗H1(C•L/S). The cohomology in degree zero H0(C•L/S) is f−1OS.

First we state a simple lemma, the proof of which can be found in
[Ban94].

Lemma 3.17. Let U be a symplectic manifold and suppose moreover
that H1(U,K) = 0 (and that U is Stein in the complex case). Then
the Lie algebra of the symplectomorphism group of U is exactly the Lie
algebra of Hamiltonian vector fields on U .

Proof of the theorem: We suppose that L is embedded in U × S where
U ⊂M is a contractible (Stein) neighborhood of each fibre Ls in M .

We first proof the second statement. Take an element h which lies
in H0(C•L/S) = Ker(δ : OL → C1

L/S). Then {h, g} ∈ I for all g ∈ I. If h
is not constant on the fibres of f , then the ideal (I, h) is strictly larger
than I, not the whole ring and still involutive. This is a contradiction
to the fact that L is a lagrangian family, which means that I is maximal
under all involutive ideals. So the kernel must be the constant sheaf.

To prove that H1(C•L/S) = T 1
LagDef (L/S), two things have to be

checked: As C1
L/S is the normal module of L in U × S, we must first

identify the elements of Ker(δ1 : C1
L/S → C2

L/S) with the lagrangian
deformations. Then we have to show that the image of δ0 : OL →
C1
L/S are the trivial deformations. But this is easy, because for f ∈

OL, δ(f) acts as Hf , thus inducing a trivial deformation of each fibre.
Furthermore, of all deformations coming from relative vector fields on
M×S, only those induced by relative hamiltonian vector fields are trivial
in the lagrangian sense (this follows from the preceding lemma).

Take an element Φ ∈ Ker(δ1), which means that

φ ({g, h})− {g, φ(h)} − {φ(g), h} = 0

for all f, g ∈ I/I2. Then Φ corresponds to the deformation given by

Ĩ = (f1 + εφ(f1), . . . , fk + εφ(fk))

The ideal Ĩ is involutive iff for any two elements f + εφ(f), g+ εφ(g), we
have {f + εφ(f), g + εφ(g)} ∈ Ĩ, which is equivalent to

F := {f, g} + ε ({f, φ(g)} + {φ(f), g}) ∈ Ĩ
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Consider G := {f, g} + εφ ({f, g}), which is an element of Ĩ, so the
condition F ∈ Ĩ is equivalent to F −G ∈ Ĩ, that is

{f, φ (g)} + {φ (f) , g} − φ ({f, g}) ∈ I

This means exactly that φ ∈ Ker(δ1).

Given a family of lagrangian subvarieties f : L ↪→ M × S � S, one
is of course interested in the global deformation spaces. We first observe
the following

Corollary 3.18. There is an exact sequence

0 −→ R1f∗f−1OS −→ R1f∗(C•L/S) −→ f∗H1(C•L/S)

−→ R2f∗f−1OS −→ R2f∗C•L/S
Furthermore, there are two special cases:

• Let the family L be contractible along the fibres of f . Then

R1f∗C•L/S = f∗H1(C•L/S)

and in fact: T 1
LagDef (L/S) = f∗H1(C•L/S).

• Let f be smooth (and Stein if K = C). Then it follows that

R
1f∗C•L/S = R1f∗f−1OS

and the space of global deformations of the family L → S is indeed
R1f∗f−1OS.

Proof. The exact sequence follows from the usual local to global spectral
sequence. The assertion for a contractible family L is just the last theo-
rem. In the second case, note that the space of embedded deformations is
f∗NL, where NL is the normal normal bundle of L in M ×S. Each fibre
Ls is a smooth lagrangian submanifold of M , therefore we have a bundle
isomorphism NL ∼= ΩL/S . Therefore each infinitesimal deformation cor-
responds to a fibrewise global one-form on L, i.e. a section of f∗ΩL/S .
It is closed iff the deformation is lagrangian and the subspace of exact
one-forms are deformations induced by hamiltonian vector fields, these
are precisely the trivial ones. This yields T 1

LagDef (L/S) = R1f∗f−1OS

(here the assumption that f is Stein is needed in the complex case).
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By analogy with the cotangent complex, we conjecture the following
generalization.

Conjecture 3.19. The space of infinitesimal lagrangian deformations
of a family of analytic lagrangian subspaces L ⊂M × S is

T 1
LagDef (L/S) = R1f∗C•L/S

3.3.2 Obstructions
Unfortunately, the complex (C•L, δ) does not have a bracket, i.e. there is
no controlling dg-Lie algebra for the functor LagDefL. However, we can
extract some information on the obstruction theory for this functor from
the second cohomology of C•L. As there are only partial results on the
obstruction theory, we restrict in what follows to the case of a (single)
lagrangian germ (L, 0) ⊂ (M, 0).

Theorem 3.20. Chose for a given deformation Φ ∈ C1
L elements gi ∈

OM such that the class of gi modulo I equals Φ(fi). Denote by obfi∧fj

the class of the element {gi, gj} in OL. Then we have the following: If
there exists a map ob : C1

L → C2
L such that ob(Φ)(fi ∧ fj) = obfi∧fj then

• δ (Im(ob)) = 0 and ob
(
Im(δ : OL → C1

L)
)

= 0, so ob defines a map

ob : H1(C•L) −→ H2(C•L)

• ob(Φ) = 0 ∈ H2(C•L) iff there exits a (not necessarily flat) defor-
mation over Spec(K[ε]/ε3) whose fibers are lagrangian subvarieties
inducing the given deformation over Spec(K[ε]/ε2).

Proof. The first statement can be verified by a direct calculation which
uses several times the Jacobi identity. So we suppose that there is a map
ob : H1(C•L) → H2(C•L). Let Φ ∈ H1(C•L) be an element of Ker(ob). This
condition is equivalent to the existence of Ψ ∈ H1(C•L) with ob(Φ) =
δ(Ψ), i.e.

{Φ(f),Φ(g)} = Ψ ({f, g}) − {f,Ψ(g)} − {Ψ(f), g} ∀f, g ∈ L

But this means that the following ideal is involutive:

J = (f1 + εΦ(f1) + ε2Ψ(f1), . . . , fk + εΦ(fk) + ε2Ψ(fk))
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proving that the given lagrangian deformation can be lifted to third
order.

Remark: Unfortunately, the Poisson-bracket does not descend to OL,
so it is not clear whether the elements obfi∧fj always extend to a map
ob : C1

L → C2
L. Furthermore, H2(C•L) does not contain any information

on whether a given Φ ∈ H1(C•L) can be lifted as a flat deformation.
For these reasons, the last result is rather weak and of no great use
in practical calculations. As already said, there is for the moment no
complete obstruction theory for the functor LagDef L. Meanwhile, we
can give a condition for the T 1-lifting criterion to hold true.

Theorem 3.21. Let L ⊂M be lagrangian and suppose that the functor
Def L is smooth and that H2(C•L) = 0. Then the T 1-lifting criterion holds
for the functor LagDef L, i.e., the functor is smooth in this case.

Proof. We start by considering the functors Def L and EmbDef L. The
latter is the functor of embedded deformations of L as an analytic space.
It is a classical result that the natural transformation EmbDef L → Def L
is smooth (see, e.g., [Art76]). Hence, for Def L smooth we get that also
EmbDef L is smooth.

Denote as usual by Ak the ring K[ε]/εk+1 and by Lk a family of
lagrangian varieties over Ak with zero fibre L, that is Lk ∈ LagDefL(Ak ).
The relative tangent space T 1

EmbDef (Lk/Ak) (for Lk seen as lying in
EmbDef L(Ak)) equals

C1
Lk/Ak

= HomOL(Ik/I2
k ,OL)

where Ik is the defining ideal sheaf of Lk in OM ⊗̂Ak. Now fix a non-
negative integer n. What we need to prove is that for any given Ln ∈
LagDefL(An) there exists an element in LagDef L(An+1) which restricts
to Ln. We have from theorem 3.16 on page 72 that T 1

LagDef (Ln/An) =
H1(C•Ln/An

). The sequence

0 −→ K
·εn−→ An −→ An−1 −→ 0

yields by tensoring with the flat An-module OLn

0 −→ OL
·εn−→ OLn −→ OLn−1 −→ 0 (3.2)
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Applying the functor HomOLn

(∧• In/I2
n,−
)

to this sequence yields the
exact sequence of complexes

0 −→ C•L −→ C•Ln/An
−→ C•Ln−1/An−1

It is not exact on the right in general. However, using lemma A.22 on
page 155 it follows that the T 1-lifting theorem holds for the functor
EmbDef L, so that the map C1

Ln/An
→ C1

Ln−1/An−1
is surjective. There-

fore, we obtain a connecting homomorphism and the following long exact
cohomology sequence

−→ H1(C•Ln/An
) −→ H1(C•Ln−1/An−1

) −→ H2(C•L)

−→ H2(C•Ln/An
) −→ H2(C•Ln−1/An−1

)

By assumption, H2(C•L) = 0 so we get a surjection

T 1
Ln/An

� T 1
Ln−1/An−1

Then the T 1-lifting criterion (theorem A.20 on page 153) yields the
smoothness of LagDef L.

Corollary 3.22. Let L ⊂ M be either a complete intersection of arbi-
trary dimension or a Cohen-Macaulay surface. Then Def L is smooth,
in particular, LagDef L is smooth if H2(C•L) = 0.

Proof. In both cases it is known that T 2
L (see corollary A.32 on page 169

for its definition) vanishes, which gives the smoothness of Def L.

We remark that is is not clear in which cases this theorem applies,
because for smoothable lagrangian singularities it is likely that the di-
mension of H2(C•L) equals the second Betti number of a smooth fibre (see
corollary 3.40 on page 94), which might not vanish, at least for surfaces.
However, vanishing of H2(C•L) is not really needed in the proof, it suffices
that the map

H2(C•L) −→ H2(C•Ln/An
)

given by multiplication with εn is injective. This is a much weaker con-
dition which hopefully can be verified for interesting classes of examples
like complete intersection of codimension two Cohen-Macaulay spaces.
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3.3.3 Stability of families
Up to now, we were only concerned with deformations over Artin bases.
Therefore, all statements on versality were in fact statements on formal
versality (existence of a hull, see definition A.6 on page 141). Indeed,
very little is known about the existence of deformations over convergent
bases which are semi-universal in the strong sense, i.e., when there exist
convergent base changes which induces every given deformation. This
has to be compared to the general situation in deformation theory, e.g.
flat deformations of singularities, where one needs supplementary effort
and rather different techniques to obtain the existence of semi-universal
deformations (see [dJP00]). However, there is a result, due to M. Garay
([Gar02]) for the functor LagDef L which can be used to prove rigidity
(in the analytic sense) for certain examples. In the quoted paper, the
theorem is stated for complete intersections, but this assumption is not
essential. We adopt the proof to the general case. In order to do this,
we first introduce an important tool form general deformation theory in
our setting, namely, the so-called Kodaira-Spencer map.

Lemma 3.23. Consider any lagrangian family L → S. Then there is a
natural morphism

KS : ΘS −→ f∗H1(C•L/S)

called the Kodaira-Spencer map. We can also consider the so-called re-
duced Kodaira-Spencer map KS red : TS,0 −→ H1(C•L,0) (where L :=
f−1(0)) which is the reduction of KS by the maximal ideal mOS,0 . Then
if KS red is surjective then also KS is surjective.

Proof. The proof relies on the coherence of the relative cohomology
sheaves of C•L/S for a lagrangian family. We defer the statement and
the proof of this result to the next section (theorem 3.35 on page 88).

Let us first define the map KS . Denote by I ⊂ OM×S the defining
ideal sheaf of L. Then we let KS (ϑ) be the class [Φ] in H1(C•L/S) of the
homomorphism

Φ ∈ C1
L/S = HomOL(I/I2,OL)

defined by Φ(g) := ϑ(g) for g ∈ I where ϑ is seen as a vector field in
ΘM×S . It is easily shown that Φ lies in the kernel of δ : C1

L/S → C2
L/S

because the Poisson bracket on OM×S and derivation with respect to S
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commutes. From theorem 3.35 we know that f∗H1(C•L/S) is OS-coherent.
Hence KS is a morphism between coherentOS-modules. Therefore, if the
reduction modulo mOS,0 is surjective, the map KS is itself surjective.

Now we state the theorem on stability of lagrangian families.

Theorem 3.24. Let (L, 0) ⊂ (M, 0) be given with dim(H1(C•L,0)) <∞.
Suppose that there is a flat lagrangian deformation f : L → S over a
smooth complex space S which is infinitesimal versal, i.e., such that the
reduced Kodaira-Spencer map

KS red : T0S → H1(C•L,0)

is surjective. Then this family is stable, that is, each one-parameter
deformation over a smooth base T is analytically (symplectic) equivalent
to f .

For the proof, we need the general principle of integration of vector
fields, which can be stated as follows.

Lemma 3.25. Let (X, 0) be a germ of an analytic space and ϑ ∈ ΘX,0

a derivation of OX,0 such that there exists g ∈ mOX,0 with ϑ(g) = 1 ∈
OX,0. Then K := ker(ϑ) is an analytic subalgebra of OX,0 and the map
K{G} → OX,0, G 	→ g is an isomorphism.

See the first chapter of [BF00] for the proof.

Proof of the theorem. Let F : LT → ST be a one-parameter deformation
of f over T , where T is an open neighborhood of the origin in K. It fol-
lows from the last lemma that in order to show that the family F is trivial
we have to find a compatible pair of vector fields (θ, δ) ∈ ΘLT × ΘST

trivializing F . This means that dF (θ) = δ and that there is a function
t ∈ OST with δ(t) = 1 and (F ∗t)−1(0) ∼= L. The spaces S and T are
smooth, therefore we can suppose that ST ∼= S×T and that OT,0 = K{t}.
Denote by p : S × T → S the projection and let IT be the ideal which
defines LT in M ×S×T . We are left to show that there is ϑ ∈ p∗ΘM×S
such that (ϑ + ∂t)(IT ) ⊂ IT (then ϑ + ∂t defines the field θ ∈ ΘLT as
required). However, there is one additional condition on ϑ, namely, we
need that ϑ− df (ϑ) is an element of HamM×S/S ⊂ ΘM×S/S , the space
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of relative vector field which are fibrewise hamiltonian, otherwise the
automorphism obtained by integration would not be symplectic.

From the last lemma we have two surjective morphisms

KSL/S : ΘS −→ f∗H1(C•L/S)
KSLT /ST

: ΘS×T −→ F∗H1(C•LT /ST
)

These are the Kodaira-Spencer maps of the families f : L → S and F :
LT → ST . They are both surjective because their reductions modulo the
respective maximal ideals (mOS and mOS×T ) coincide and are surjective
by assumption. Moreover, the natural restriction morphism C•LT /ST

→
C•L/S induces a map F∗H1(C•LT /ST

) → f∗H1(C•L/S). We compose it with
the inclusion f∗H1(C•L/S) ↪→ p∗f∗H1(C•L/S) to obtain a morphism

Φ : F∗H1(C•LT /ST
) −→ p∗f∗H1(C•L/S)

The reduction of this morphisms is the identity on H1(C•L), therefore Φ
is an isomorphism by the coherence of the two cohomology sheaves. This
gives a surjective morphism

p∗KSL/S : p∗ΘS −→ F∗H1(C•LT /ST
)

so that there is ϑ1 ∈ p∗ΘS with p∗KSL/S(ϑ1) = KSLT /ST
(∂t). Looking

at the definition of the Kodaira-Spencer map, this equality (recall that
it is an equality in the cohomology of the complex C•LT /ST

) shows that
there exists a function h ∈ OM×S×T such that (Xh+ϑ1 +∂t)(IT ) ⊂ IT .
Therefore the vector field ϑ := ϑ1 +Xh satisfies the requirements. This
finishes the proof.

Note that in abstract deformation theory as described in Appendix
A one can construct a Kodaira-Spencer map for any cofibred groupoid.
For the cofibred category LagDefL, this general description reduces to
the above definition. The abstract Kodaira-Spencer map sits in an exact
sequence (see [BF00] for a detailed account) and it seems that the proof
of the theorem just given can be directly deduced form the exactness of
this sequence. However, in order to do this one has to consider a category
over the category of local analytic rings (and not only over Art) in order
to get the convergent stability theorem as stated above.
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In general, we do not yet have a versality theorem for lagrangian
singularities, but the above stability criterion allows us to detect whether
a given lagrangian singularity is rigid in a rather weak sense.

Theorem 3.26. Let (L, 0) ⊂ (M, 0) be lagrangian with H1(C•L,0) = 0.
Then any deformation LS ↪→ M × S � S where S is a smooth analytic
space can be trivialized by an analytic symplectomorphism.

Proof. As H1(C•L,0) vanishes, the family L→ {pt} is infinitesimal versal.
Thus the last theorem implies that any deformation LS → S can be
trivialized.

This gives not yet rigidity in the usual sense, because we assume
the base of the family LS → S to be smooth in order to apply the
theorem. Therefore it is a priori possible that there are deformations over
singular curves which cannot be analytically trivialized in the symplectic
category. This gap is still to be filled.

3.3.4 Integrable systems

In this section we will construct a controlling dg-Lie algebra for defor-
mations of integrable systems. Its definition is a special case of the
lagrangian de Rham complex. However, its terms are modules on the
whole symplectic manifold, which is the main reason for the existence of
a Lie bracket making it into a dg-Lie algebra.

So let us consider an analytic mapping F : M → U , where M is a
2n-dimensional symplectic manifold and U is an open domain in Kn.
Therefore, F has components F = (f1, . . . , fn). Then the condition for
this system to be completely integrable is {fi, fj} = 0 ∈ OM (see page
35 and page 57). To associate a Lie algebroid to this situation, consider
the graph of the mapping F :

M
� � Γ ��

F

��

M × U

pr2

		��������������

U
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Denote by L the image of Γ and let I ⊂ OM×U the defining ideal sheaf.
It is immediate that I is involutive with respect to the Poisson bracket
{ , }U on M × U . So we are in the general situation described above
and I/I2 is a Lie algebroid over the morphism pr2 : M × U → U . We
denote the corresponding de Rham complex by C•F . It is a complex of
locally free sheaves on M (because the graph is smooth in M × U). It
can be explicitly written down.

Lemma 3.27. The terms of the complex C•F are

CpF ∼= HomOM

(
p∧
I/I2,OM

)
∼=

p∧
OM

together with the following differential

δ : CpF ∼= O(n
p)
M −→ Cp+1

F
∼= O( n

p+1)
M

(gi1...ip)i1<...<ip 	−→
(

n∑
l=1

(−1)l{fl, gj1...ĵl...jp+1
}
)
j1<...<jp+1

Moreover, the product structure of C•F is given by

CpF × CqF −→ Cp+qF(
(gi1...ip)i1<...<ip , (hj1...jq )j1<...<jp

)
	−→ g ∧ h

with

g ∧ h :=
∑

I
∐
J={1,...,n}

i1<...<ip , j1<...<jq

sgn(I, J) · gi1...ip · hj1...jq

Proof. The conormal module I/I2 of L is generated by the classes of
the functions Fi := xi − fi ∈ OM×U where xi are coordinates in U .
Then the statements of the lemma are immediate by using the fact that
{c, Fi} = {c, fi} for any c ∈ OL ∼= OM .
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The complex C•F differs in one point from the the complex C•L/S for
a general lagrangian family: it consists of modules of homomorphisms
into OM , which is not only an algebra but also a Lie algebra under the
Poisson bracket. This is not the case for the complex C•L/S in general
and allows us to define the structure of a dg-Lie algebra on C•F by using
exactly the same formula as for the product

[g, h] :=
∑

I
∐
J={1,...,n}

i1<...<ip , j1<...<jq

sgn(I, J) ·
{
gi1...ip , hj1...jq

}

Theorem 3.28. The complex (C•F , δ, [ , ]) has the structure of a dg-Lie
algebra.

Proof. One has to do the same explicit calculations as for the proof of
theorem 3.11 on page 67.

We can now describe the relation between the functor HamDef F
and the complex C•F for a germ of a completely integrable system F :
(K2n, 0) → (Kn, 0). We consider the functor HamDef F as well as the
dg-Lie algebra C•F for a representative F : V → U with V and U open
domains in M and Kn, respectively.

Theorem 3.29. Denote by L := (C•F , δ, [ , ]) the dg-Lie algebra asso-
ciated to the mapping F . Then there is an isomorphism of functors
η : DefL → HamDef F .

Proof. The definition of the transformation η is straightforward: Let A
be in Art and g ∈ MCL(A), i.e.:

g = (g1, . . . , gn) ∈ C1
F ⊗ mA = (OV ⊗ mA)n

such that δ(g) + 1
2 [g,g] = 0. This means that for any i < j

{gi, fj} − {fi, gj} + {gi, gj} = 0

which is easily seen to be equivalent to the vanishing of all commutators
of the deformed system

FS = (f1 + g1, . . . , fn + gn) : V × Spec(A) → U
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On the other hand, each deformation of F , that is, an element in the
groupoid HamDefF (S) representing a given isomorphy class in the
set HamDef F (S) is of the above form with all commutators vanishing.
Therefore it defines an element in MCL(A). It remains to identify the
group of S-symplectomorphisms with GL(S). But this is clear, as locally
(see lemma 3.17 on page 72) each symplectomorphism is generated by a
hamiltonian field and the action(

L0 ⊗ mS

)
×
(
L1 ⊗ mS

)
→ L1 ⊗ mS

is precisely the action of a (relative) hamiltonian field on the deformed
map FS .

3.4 Properties of the lagrangian de Rham
complex

3.4.1 Constructibility and Coherence
As we have seen in the last chapter, the cohomology of the complex C•
plays an important role in the deformation theory of L. From Schles-
singer’s theorem (theorem A.8 on page 142) we know that the main point
in proving the existence of (formally) semi-universal deformations is the
finiteness of this cohomology. The following section is devoted to study
this problem. It turns out that there is a natural condition for a variety
L that ensures that the cohomology of C•L is finite over K.

When one studies the functor Def L of flat deformations (see sec-
tion A.2.3), a formally (and even convergent) semi-universal deforma-
tion exists by Schlessinger’s theorem if the singularities are isolated.
Our condition therefore has to be seen as an analog (in the symplec-
tic/lagrangian context) to the condition dim(Sing(L)) = 0. However,
we insist on the fact that it is a considerably weaker condition, meaning
that there are many lagrangian singularities with non-isolated singular
locus having finite-dimensional T 1

LagDef (and eventually a semi-universal
deformation). We will discuss examples in the next section.

In fact, we have two more precise results: First, in the absolute case,
even to prove finiteness one needs to study the structure of the coho-
mology sheaves of the complex C•L. We will show that these cohomology
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sheaves are constructible with respect to a suitable stratification of the
variety L. On the other hand, the complex C• has been introduced in a
relative setting for a morphism f : L → S. In this case one is interested
in the hyperdirect image sheaves Rif∗C•L/S. The preceding result can be
extended to prove the coherence of these sheaves. It is an open problem
whether they are always free. However, for i = 1 freeness can be proved
under some assumptions yielding a nice application for smoothable sin-
gularities L.

We start by introducing the above mentioned condition. In the whole
section, we will consider a Stein representative L for a germ (L, 0) ⊂
(M, 0) of a lagrangian singularity.

Definition 3.30. Define SLk to be the following set

SLk := {p ∈ L | edim(p) = 2n− k} ⊂ L

for k ∈ {0, . . . , n} where edim(p) is the embedding dimension of the germ
(L, p). Then we will say that L satisfies “Condition P” iff the inequality
dim(SLk ) ≤ k holds for all k.

The following lemma explains the meaning of this condition in some-
what more geometric terms.

Lemma 3.31. Let p ∈ SLk ⊂ L with k > 0. Then the germ (L, p) can be
decomposed into a product

(L, p) ∼= (L′, p′) × (C, 0)

where (C, 0) is the germ of a smooth curve. This decomposition is com-
patible with the decomposition of the ambient symplectic space

(M, 0) ∼= (M ′, 0) × (M ′′, 0)

(with dim(M) = 2n, dim(M ′) = 2n−2 and dim(M ′′) = 2) by symplectic
reduction. Therefore, L′ is a lagrangian variety in the symplectic space
M ′. Furthermore, we have p′ ∈ SL

′
k−1.

Proof. Recall theorem 1.5 on page 15: Any non-degenerate hamilto-
nian function on a symplectic manifold fibres (locally) its own level hy-
persurfaces in symplectic leafs. We have k ≥ 1, therefore there is a
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non-degenerate hamiltonian function h on M which vanishes oh L, this
implies that Xh is tangent to L. Then by integration of vector fields
(lemma 3.25 on page 78 with (X, 0) = (L, p)), we get the required de-
composition (L, p) ∼= (L′, p′) × (C, 0) inside (M, 0) ∼= (M ′, 0) × (M ′′, 0).
Obviously, edim(L′, p′) = edim(L, p) − 1.

This result implies that whenever a stratum SLk is non-empty then
there are k independent non-degenerate hamiltonian vector fields defined
in a neighborhood of a point p ∈ SLk which are tangent to SLk . Thus, the
dimension of this stratum must be at least k. So “Condition P” can be
restated by saying that either dim(SLk ) = k or SLk = ∅.

The preceding lemma can be used to show that there are germs of
singular spaces which do not admit any lagrangian embedding.

Corollary 3.32. Let n > 1 and (X, 0) ⊂ (Kn+1, 0) be an isolated hy-
persurface singularity. Then there is no lagrangian embedding (X, 0) ↪→
(K2n, 0).

Proof. Suppose that a lagrangian embedding exists. The embedding
dimension of the germ (X, 0) is n + 1 < 2n, so by the previous lemma
there is a decomposition (X, 0) = (Y, 0)× (Kn−1, 0) showing that (X, 0)
has non-isolated singularities.

The two preceding results can be found in [Giv88]. We show now that
for products of a lagrangian germ with a smooth factor the deformation
theory (and more generally the cohomology of the whole complex) be-
haves particularly well. The phenomenon described by the following
lemma is illustrated in figure 3.1 on page 87.

Lemma 3.33 (Propagation of Deformations). Let (L, 0) ⊂ (M, 0)
be a germ of a lagrangian subvariety which can be decomposed, i.e., there
is a germ (L′, 0) (which is lagrangian in (M ′, 0)) such that (L, 0) =
(L′, 0) × (C, 0) with C a smooth curve. Denote by π : L → L′ the
projection. Then there is a quasi-isomorphism of sheaf complexes

j : π−1C•L′ → C•L

Proof. Let h ∈ OM,0 be the hamiltonian function which fibres M and
L. Then there is (as it follows from the proof of lemma 3.31 and from
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lemma 3.25 on page 78) a function g ∈ mOM,0 with {h, g} = 1. Let
I ⊂ OM,0 resp. I ′ ⊂ OM ′,0 define (L, 0) resp. (L′, 0). Then

OM ′,0 = {α ∈ OH,0 | {α, h} = 0} and

I ′ = I ∩ OM ′,0 = {α ∈ I | {α, h} = 0}
where H is the smooth hypersurface in M given by the vanishing of h.
More specifically, we have OH,0

∼= OM ′,0{g} and OL,0
∼= OL′,0{g}. This

implies the following relation between the conormal modules I/I2 and
I ′/I ′2:

I/I2 =
(
I ′/I ′2 ⊗OL′,0 OL,0

)
⊕OL,0

where the (free) factor OL,0 is generated by the class of h in I/I2. Fur-
thermore, the Lie algebra structure on I/I2 is of special type: For all
fi ∈ I ′/I ′2 the bracket {h, fi} vanishes. We get

p∧
I/I2 =

(
OL,0 ⊗OL′,0

p∧
I ′/I ′2
)

⊕
(
OL,0 ⊗OL′,0

p−1∧
I ′/I ′2
)

and

CpL,0 = HomOL,0

(
OL,0 ⊗OL′,0

∧p
I ′/I ′2,OL,0

)
⊕ HomOL,0

(
OL,0 ⊗OL′,0

∧p−1
I ′/I ′2,OL,0

)
We write elements of CpL,0 as infinite sums of type

∑∞
i=0 (Φi,Ψi) gi. Then

the differential is (for details of the calculation see [Sev99]):

δ : CpL,0 −→ Cp+1
L,0∞∑

i=0

(Φi,Ψi) gi 	→
∞∑
i=0

(
δΦi, δΨi + (−1)p+1(i+ 1)Φi+1

)
gi

We define the morphism j to be the inclusion

HomOL′,0

(∧p
I ′/I ′2,OL′,0

)
↪→

HomOL,0

(
OL,0 ⊗OL′,0

∧p
I ′/I ′2,OL,0

)
⊕

HomOL,0

(
OL,0 ⊗OL′,0

∧p−1
I ′/I ′2,OL,0

)
Φ 	−→ (Φ, 0) · g0
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Deformation of a
transversal slice

��

��

Deformations of
the surface

��

��

Figure 3.1: Propagation of deformations

It remains to show that the cokernel of this inclusion is acyclic. Then it
follows immediately from the long exact cohomology sequence that j is
a quasi-isomorphism. So let Γ be an element outside of the image of j
such that δ(Γ) = 0, that is:

Γ =
∞∑
i=1

(Φi,Ψi)gi + (0,Ψ0)

with δΦi = 0 and δΨi = (−1)p(i+1)Φi+1 for all i ∈ {0, 1, . . .}. But then
Γ vanishes in the cohomology because it can be written as Γ = δΛ with

Λ :=
∞∑
i=1

(
(−1)pΨi−1

i
, 0
)
gi ∈ Cp−1

L,0

Corollary 3.34. There are isomorphisms of sheaves

π−1Hi(C•L′) ∼= Hi(C•L)

Proof. This follows because π−1 is an exact functor.
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Now we come to the main theorem of this section. We consider
directly the relative situation of a lagrangian family L → S. We restrict
to the complex case for simplicity. If K = R, one might consider the
complexification of the lagrangian variety. Recall that we suppose the
morphism f : L → S to be Stein.

Theorem 3.35. Suppose that “Condition P” is satisfied for each fibre
Ls of f . Then

• Hi(C•Ls
) are constructible sheaves of finite dimensional vector spa-

ces with respect to the stratification given by the SLs

k .

• Rif∗C•L/S is a coherent sheaf of OS-modules.

• Rif∗C•L/S = f∗H1(C•L/S) and moreover
(

Rif∗C•L/S
)

0
= Hi(CL/S,0)

Proof. First note that by embedding S
i
↪→ U into a smooth ambient

space U and by considering the higher direct image sheaves of the com-
position i ◦ f , we can always assume S to be smooth.

For the first part, two things have to checked: We must prove that
the restriction of the cohomology sheaves to the strata SLs

k are locally
constant and that the stalks of Hi(C•Ls

) are finite dimensional over C.
The first statement is a direct consequence of the last corollary: Let
p ∈ SLs

k be a point at which Ls is decomposable, i.e. k > 0. By
induction, we find a neighborhood U ⊂ Ls of p such there is an analytic
isomorphism h : U

∼=−→ Z × Bkε , where Z is lagrangian in M ′ with
dim(M ′) = 2n − 2, Bε := {z ∈ C | |z| < ε} and each q ∈ U ∩ SLs

l

corresponds via h to a point (q′, b) ∈ Z×Bkε with q′ ∈ SZl−k. In particular,
the image of U ∩SLs

k under h is ({pt}, B(ε)k), so Hp(C•Ls
) is constant on

U ∩ SLs

k .
Now we come to the next part. In fact, in order to prove that the

stalks of Hi(C•Ls
) are finite dimensional it suffices to show that Rif∗C•L is

coherent on S. In this way we can handle the two parts of the theorem
at the same time. The following theorem, which we adapt from [vS87],
will be used. Note that it uses the fundamental result from functional
analysis (proposition B.10). For further references, see also [BG80] and
the appendix of [Gar02].
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Theorem 3.36. Let a germ g : (Y, 0) → (T, 0) of a flat Stein morphism
of complex spaces be given. Denote by (Y0, 0) := (g−1(0), 0) the germ
at zero of the zero fibre of g. Embed Y0 and T in some CN and in
CM , respectively, so that Y ⊂ CN × T . Choose a so called standard
representative g : X → S, i.e. a morphism representing the given
germ such that:

1. S := Sη := T ∩Dη

2. X := Xε,η := ((Bε × S) ∩ Y ) ∩ g−1(Dη)

for an open ε-ball Bε ⊂ CN and an open η-ball Dη ⊂ CM . For small
ε and η the fibres of g will be Stein, contractible and intersect ∂Bε × S
transversally. Let (K•, d) be a sheaf complex on X with the following
properties

1. all Kp are OX-coherent

2. the differentials d : Kp → Kp+1 are g−1OS-linear

3. there is a neighborhood U of ∂X := (∂Bε × S) ∩ Y ∩ g−1(Dη) in
CN × S and a vector field ϑ of class C∞ on U such that

• ϑ is transversal to ∂Bε × S

• the flow of ϑ respects X and the fibers of g.

• the restriction of the cohomology sheaves Hp(K•) to the inte-
gral curves of ϑ are locally constant sheaves.

Then the sheaves Rpg∗K• are OS-coherent.

If we take (Y, 0) = (L, 0) ⊂ (M×S, 0), g = f and K• = C•L/S , then the
only thing to verify is the existence of a vector field as described in the
theorem. Choose a standard representative X := Lε′,η′ → S := Sη such
that on each fibre Xs we have edimXs(p) < 2n for all p /∈ {0}×S (this is
possible due to “Condition P”). The vector field we are looking for will be
constructed in two steps: Let p ∈ ∂X be a point with p ∈ SXs

k with k > 0.
Then it follows from lemma 3.31 on page 84 that there are k independent
holomorphic hamiltonian vector fields η1, . . . , ηk tangent to the stratum
SXs

k and to the fibres of f . We lift them to sections of ΘM×S/S defined in
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a neighborhood Up ⊂M ×S of p. The stratum SXs

k has complex dimen-
sion k (“Condition P”), therefore, the 2k fields η1, . . . , ηk, iη1, . . . , iηk,
viewed as C∞-vector fields span the real tangent space of SXs

k at p.
As SXs

k was transversal to ∂Xs := (∂Bε × {s}) ∩ Y ∩ g−1(Dη), a linear
combination of these vector fields will define a field as required in the
neighborhood Up. Here we use the fact that the cohomology sheaves of
C•L/S are constant on the strata SXs

k , thus on the integral curves of the
above fields. To conclude, we choose a partition of unity subordinate
to the covering of a neighborhood U of ∂X defined by the Up. This
allows us to glue the fields defined on the neighborhoods Up to a field as
required in theorem 3.36. Thus the coherence of the higher direct image
sheaves is proved.

The last part of the theorem follows easily as in [vS87] (Proposition
1), because the vector field constructed above defines for each s ∈ S
a shrinking of f−1(s) onto one point as required in the proof of the
proposition in loc.cit.

Summarizing what has been done, we get the following main result
by theorem 3.16 on page 72, theorem 3.35 on page 88 and Schlessinger’s
result (theorem A.8 on page 142).

Theorem 3.37. Let (L, 0) ⊂ (M, 0) be a lagrangian singularity satisfy-
ing “Condition P”. Then there exists a formally semi-universal deforma-
tion (LS , 0) ↪→ (M × S, 0) � (S, 0) with S ∈ Ârt which satisfies

dim
(
(mOS/m

2
OS

)∗
)

= dim(H1(C•L,0))

It is a very natural question to ask whether “Condition P” is always
satisfied for a lagrangian variety L ⊂ M . This is obviously not the case
for non-reduced spaces L, but the following example (which can be found
in [Giv88], see also the discussion on page 21) shows that there exist
even reduced varieties L ⊂ M where points with maximal embedding
dimension are non-isolated.

Consider any non quasi-homogeneous plane curve singularity (C, 0) ⊂
(C2, 0). It has an associated legendrian space curve K := Im(F, n),
where F ∈ OC̃ is the generating function and n : C̃ → C the normaliza-
tion map. K is a singular legendrian subspace of the contact manifold
C3. Now for any germ of a contact manifold (K, 0) of dimension 2n− 1



3.4 Properties of the lagrangian de Rham complex 91

we can equip the direct product (M, 0) = (K, 0) × (C∗, p) with a sym-
plectic structure (which is called symplectization of (K, 0) in [Giv88]):
in our example, if (p, q, z, t) are local coordinates on M = C3 × C∗ on
(M, 0), then

ω = d (t(dz − pdq))

We have the projection π : (M, 0) → (K, 0) and the preimage L :=
π−1(Λ) is a lagrangian subspace of (M, 0). Obviously, at all points
(0, q) ∈ L we have edim(0,q)L = 4. Therefore, (L, 0) does not satisfy
“Condition P”. Probably, there are examples of this type where the co-
homology of C•L,0 (and in particular the tangent space of LagDef L,0) is
not finite over C. However, as these spaces are non-quasihomogenous, a
direct calculation of the cohomology of the complex C• is very difficult
(see section 3.5).

Remark: By the Riemann-Hilbert-correspondence ([Bjö93]), the com-
plex C•L, viewed as an object of Db

c(CM ) (the derived category of con-
structible sheaves of C-vector spaces on M) corresponds via the (inverse
of the) de Rham-functor to a unique complex of coherent DM -modules
with regular holonomic cohomology supported on L (i.e. an object of
Db

r.h.(µL(DM ))).

Lemma 3.38. Let L ⊂ M satisfy “Condition P”. Then the complex C•L
satisfies the first perversity condition, that is, the following inequality
holds.

dim supp(Hi(C•L)) ≤ n− i

Proof. Let p ∈ SLk . Then (L, p) = (L′, p′) × (Ck, 0) and Hi(C•L)p =
Hi(C•L′)p′ . But dim(L′) = n− k, so Hi(C•L′)p′ = 0 for all i > n− k. This
means that for fixed i, Hi(C•L)p = 0 for p ∈ SLk for all k > n − i. So
Hi(C•L) is supported on the strata SLk for k ≤ n − i. By “Condition P”
they are of dimension less or equal n− i.

The second perversity condition means that

dim supp(Hi
V (C•L)) ≤ dim(V )

for any irreducible subspace V ⊂ L and any i ∈ {0, . . . , n− dim(V )}.
Here Hi

V (C•L) is the i-th local cohomology sheaf with respect to V of C•.
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It is not known whether this condition is always satisfied by a variety L
with constructible complex C•L. Whenever this is the case, the Hi’s are
the de Rham-cohomology modules of a single DM -module supported on
L. One might speculate that there is some operation (direct image in an
appropriate category, like the modules over Lie algebroids) that produces
this DM module (or a whole complex in case that the cohomology of C•L
is not perverse) from the DI/I2-module OL and commutes with the de
Rham functor.

3.4.2 Freeness of the relative cohomology
Now that we know about the coherence of the cohomology of C•L/S , one
might ask about its freeness. This is an open problem in general, but
there is a partial result for the first cohomology. The ideas presented in
this section can also be found in [GvS02].

Theorem 3.39. Consider a lagrangian family f : L → S over a smooth
base S and suppose that

• L := f−1(0) is a complete intersection.

• The family is an infinitesimal miniversal deformation of L (in the
sense of theorem 3.24 on page 78, i.e., the reduced Kodaira-Spancer
map is an isomorphism). In particular, we have that dim(S) =
dim
(
H1(C•L,0)

)
.

Then f∗H1(C•L/S) is a locally free sheaf of OS-modules. Moreover, if
dim(L) = 2, then f∗H2(C•L/S) is also locally free.

Proof. We will show that the stalk of f∗H1(C•L/S) at zero (which we
denote temporarily by H) is a free OS,0-module. We know from theo-
rem 3.35 on page 88 that H is finitely generated and equals H1(C•L/S,0).
It will be sufficient to show that H is a Cohen-Macaulay module, that is,
depth(H) = dim(S). Denote C•L/S,0 by C• for short and chose a system
of parameters (s1, . . . , sk) of S. From the freeness of I/I2 we get the
existence of a short exact sequence of complexes

0 → C•
(s1, . . . , si) C•

·si+1−→ C•
(s1, . . . , si) C•

−→ C•
(s1, . . . , si+1) C•

→ 0
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The long exact cohomology sequence yields

. . .→ H0 (C•/ (s1, . . . , si) C•) α−→ H0 (C•/ (s1, . . . , si+1) C•)
→ H1 (C•/ (s1, . . . , si) C•)

·si+1−→ H1 (C•/ (s1, . . . , si) C•)
→ H1 (C•/ (s1, . . . , si+1) C•) −→ . . .

But we have identifications H0 (C•/(s1, . . . , sj)C•) ∼= C{sj+1, . . . , sk} for
any j ∈ {1, . . . , k}, so the map α is just the restriction

C{si+1, . . . , sk} −→ C{si+2, . . . , sk}

which sends h to h|si+1=0 and therefore surjective. This yields injectivity
of

H1 (C•/ (s1, . . . , si) C•)
·si+1−→ H1 (C•/ (s1, . . . , si) C•)

To conclude, we need to indentify the modules H1 (C•/ (s1, . . . , si) C•)
and H1(C•)/ (s1, . . . , si)H1(C•). The long exact sequence shows that
the there is an inclusion

H1(C•)/ (s1, . . . , si+1)H1(C•) ↪→ H1 (C•/ (s1, . . . , si+1) C•)

Consider the Kodaira-Spencer map KS : ΘS → H1(C•) of the fam-
ily f (see lemma 3.23 on page 77 for its definition). Tensoring with
OS/(s1, . . . , si+1)OS yields a morphism

KSi+1 : ΘS/(s1, . . . , si+1)ΘS −→ H1(C•)/(s1, . . . , si+1)H1(C•)

Compose it with the above inclusion to obtain a morphism

ΘS/(s1, . . . , si+1)ΘS −→ H1 (C•/ (s1, . . . , si+1) C•)

The reduction of this morphism modulo the ideal (si+1, . . . , sk) is the
reduced Kodaira-Spencer map of the family f , therefore, it is surjective
by assumption. Coherence of the two sheaves shows that the morphism
itself is surjective. Now we have a commutative diagram

ΘS/(s1, . . . , si)ΘS
��

��

H1 (C•/ (s1, . . . , si) C•)

��
ΘS/(s1, . . . , si+1)ΘS

�� �� H1 (C•/ (s1, . . . , si+1) C•)
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This shows that we can lift any class in H1 (C•/ (s1, . . . , si+1) C•) to a
class in H1 (C•/ (s1, . . . , si) C•). Hence the inclusion

H1(C•)/ (s1, . . . , si+1)H1(C•) ↪→ H1 (C•/ (s1, . . . , si+1) C•)

is also surjective. This proves that that si+1 is a non-zerodivisor on

H1(C•)/(s1, . . . , si)H1(C•)

for i ∈ {0, . . . , k − 1}. Therefore, H1(C•) is a Cohen-Macaulay OS-
module. For dim(L) = 2, we have automatically that

H2 (C•/ (s1, . . . , si) C•) → H2 (C•/ (s1, . . . , si+1) C•)

is surjective. On the other hand, the surjectivity of this map at the H1-
level which we have just proved shows (by using again the connecting
homomorphism) that

H2 (C•/ (s1, . . . , si) C•)
·si+1−→ H2 (C•/ (s1, . . . , si) C•)

is injective. Then, by the same argument, H2(C•) is Cohen-Macaulay
and therefore locally free over OS .

Corollary 3.40. Let (L, 0) ⊂ (M, 0) be a complete intersection. Con-
sider a deformation f : L → S of L such that the assumptions of the
last theorem are fulfilled. Suppose moreover that (L, 0) is smoothable and
denote by Lε the smooth general fibre of f . Then the following equality
holds

dim(H1(C•L,0)) = b1(Lε)

where b1 denotes the first Betti-number of Lε. For a surface we also get
dim(H2(C•L,0)) = b2(Lε).

Proof. We use the morphism J : Ω1
L/S → C1

L/S from page 69. J was seen
to be an isomorphism at smooth points of any fibre Ls. LetD ⊂ S be the
discriminant set of f which is a proper subspace by assumption. The last
theorem then implies that f∗H1(C•L/S) is a locally free extension of the
cohomology bundle

⋃
ε∈S\DH

1(Lε,C) over the discriminant. Moreover,
the zero fibre f∗H1(C•L/S)/mOSf∗H1(C•L/S) is canonically identified with
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the space H1(C•L,0). This proves the first statement. The second one
follows by the same argument using the freeness of f∗H2(C•L/S) for two-
dimensional lagrangian singularities.

This result is already sufficient to calculate the dimension of Hi(C•L)
if L is a product of two curves.

Corollary 3.41. Let f ∈ C{x, y} and g ∈ C{s, t} be two functions defin-
ing plane curve singularities (C, 0) and (D, 0). Then for the lagrangian
surface L := C ×D ⊂ C4 we have

dim(H1
L,0) = µ(f) + µ(g)

dim(H2
L,0) = µ(f) · µ(g)

Proof. L is completely integrable, therefore the involutive ideal Ĩ = (f+
ε1, g+ε2) (εi ∈ C) is a non-trivial lagrangian deformation. It is obviously
a smoothing, so we can apply the last corollary. Then the Künneth
formula for the cohomology of a smooth fibre Lε shows that H1(Lε,C) =
H1(Cε,C) ⊕H1(Dε,C) and H2(Lε,C) = H1(Cε,C) ⊗H1(Dε,C).

3.5 Computations
We are going to use all the techniques developed up to now to calculate
the deformation spaces and related invariants for some examples of sin-
gular lagrangian varieties. Most of these computations are by large too
complicated to be done by hand, but computer algebra turns out to be a
quite powerful tool. In particular, we made extensive use of the program
Macaulay2 ([GS]). We will not include the code that has been developed
for the calculations in the text, but indicate as explicit as possible how
one gets the results. To simplify the calculation, we will only consider
the complex case here.

Our main source of examples are lagrangian surface singularities in
four space. For surfaces satisfying “Condition P”, we have a stratification
consisting of three strata: the regular locus Lreg, the singular locus
(denoted Σ) away from the origin and the origin, which is the unique
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point with maximal embedding dimension (equal to four). Our aim
is to calculate the stalks of the cohomology of C•L at the origin. This
will be possible for one important class of examples, these are quasi-
homogeneous varieties with positive weights. To be more precise, we
suppose that our space L is strongly quasi-homogeneous in the sense
of [CJNMM96], this means that for each point p ∈ L, we can choose
local coordinates of the ambient space such that the defining equations
for (L, p) ⊂ (M,p) become quasi-homogeneous with positive weights.
Recall that there is a morphism of DGA’s J : Ω•L → C•L which is an
isomorphism on the smooth locus. Moreover, the kernel of this map
consists of the torsion subsheaves of Ω•L (see lemma 3.14 on page 70),
therefore, there is an injection of complexes Ω̃•L ↪→ C•L.

Lemma 3.42. Let L ⊂M be strongly quasi-homogeneous. Then

1. The de Rham complex Ω•L as well as the complex Ω̃•L are resolutions
of the constant sheaf CL.

2. Define E• := Coker
(
Ω̃•L ↪→ C•L

)
. Suppose dim(L) = 2. Then E•

is a two-term complex E1 δ→ E2 and we have

H1(C•L) ∼= Ker
(
E1 δ→ E2

)
and H2(C•L) ∼= Coker

(
E1 δ→ E2

)
Proof. The first statement follows from lemma 1.10 on page 19. For
the second one, we first notice that E0 = 0, Moreover, it follows from
lemma 3.15 on page 71 that for surfaces, Ep = 0 for p > 2. From the
exact sequence

0 −→ (Ω̃•L, δ) −→ (C•L, δ) −→ (E•, δ) −→ 0

we deduce the long exact cohomology sequence

. . . −→ H1(Ω̃•L) −→ H1(C•L) −→ H1(E•) −→

H2(Ω̃•L) −→ H2(C•L) −→ H2(E•) −→ H3(Ω̃•L) −→ . . .

which gives (due to acyclicity of Ω̃•) H1(C•L) ∼= Ker
(
E1 δ→ E2

)
and

H2(C•L) ∼= Coker
(
E1 δ→ E2

)
.
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Using this result, we are left with the calculation of the cohomology
of the complex E•. This is still a non-trivial task, as the differential is
not OL-linear. However, this complex is supported on the singular locus
which is one-dimensional. This simplifies the calculation considerably.

Let t ∈ mOL ⊂ OL be any function on L which is finite when re-
stricted to Σ. Let Σ̃ be the normalization of Σ. We choose a coordinate
s on the normalization such that in OΣ̃,0 we have s = tk where k is the
degree of the map t : Σ → C.

Lemma 3.43. The product with δ(t) induces an OL-linear morphism
jt : C1

L → C2
L which descends to a morphism on the quotient jt : E1 → E2.

At points p ∈ Σ\{0}, this map is an isomorphism.

Proof. It follows directly from the definition of the product structure
that there is a commutative diagram of OL-linear morphisms

Ω1
L

J

��

dt∧ �� Ω2
L

J

��
C1
L

δ(t)∧ �� C2
L

Therefore, we obtain a mapping on the quotient jt : E1 → E2 which sends
a class φ to δ(t) ∧ φ. To prove the second statement, we have to calculate
explicitly the modules E1

p and E2
p for a decomposable lagrangian germ

(L, p) ∼= (L′, p)×(C, 0) where (C, 0) is a germ of a smooth curve. We are
in the situation of lemma 3.33 on page 85: There is a regular hamiltonian
function h ∈ OM,p which fibres the germ (L, p) and a regular function g ∈
OM,p such that {f, g} = 1. Then we can choose coordinates (x, y, h, g)
of M around p. In these coordinates, the variety L is given by an ideal
I = (f(x, y), h) ⊂ C{x, y, h, g} with symplectic form dx ∧ dy + dh ∧ dg.
The singular locus L near p is in these coordinates given by the vanishing
of x, y and h. Therefore we can assume that on Σ̃, the coordinate s
coincides with g around the preimage of p. In particular, g does not
vanish around p ∈M .

Denote the local ring OL,p by R. The conormal module I/I2 is a free
R-module on the two generators f and h, so that

HomR(I/I2, R) = Rn1 ⊕Rn2
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with n1(f) = 1, n2(h) = 0, n2(f) = 0, n2(h) = 1. Obviously we have
HomR(

∧2
I/I2, R) ∼= R(n1 ∧ n2) and the complex C•L,p reads

0 → R −→ Rn1 ⊕Rn2 −→ R(n1 ∧ n2) → 0
r 	−→ ({r, f}, {r, h})

(a, b) 	−→ {a, h} + {f, b}

We need to calculate the modules of differential forms on L. We have
ΩpR = ΩpOM,p

/(IΩpOM,p
+ dI ∧ Ωp−1

OM,p
). Therefore

Ω1
R = M1 ⊕M2

Ω2
R = M3 ⊕M4

where

M1 :=
Rdx⊕Rdy

Rdf

M2 := Rdg

M3 :=
Rdx ∧ dy

Rdf ∧ dx ⊕Rdf ∧ dy

M4 :=
Rdx ∧ dg ⊕Rdy ∧ dg

Rdf ∧ dg

Now the map J can be written down explicitly

J : M1 −→ Rn1 ⊕Rn2

dx 	−→ ({x, f}, {x, h})
dy 	−→ ({y, f}, {y, h})

J : M2 −→ Rn1 ⊕Rn2

dg 	−→ ({g, f}, {g, h}) = (0, 1)

J : M3 −→ R

dx ∧ dy 	−→ J(dx) ∧ J(dy) = 0
J : M4 −→ R

dx ∧ dg 	−→ J(dx) ∧ J(dg)
dy ∧ dg 	−→ J(dx) ∧ J(dg)
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So E1
p = coker

(
Ω1
L,p → C1

L,p

)
is Rn1/ (RJ(dx) +RJ(dy)), whereas E2

p =
coker

(
Ω2
L,p → C2

L,p

)
equals R (n1 ∧ n2)/ (RJ(dx ∧ dg) +RJ(dy ∧ dg)).

If we identify Rn1 and R (n1 ∧ n2) with ΩC2,0/fΩC2,0 via the (given)
volume form dx ∧ dy, then we see that E1

p and E2
p equals ′′H/(f · ′′H)

where ′′H is the Brieskorn lattice of the function f , see also the discussion
before theorem 2.3 on page 53.

Next we calculate the map jt : E1
p → E2

p . It follows immediately using
the above description of these two modules that

jt : E1
p −→ E1

p

a 	−→ a · {t, h}

Moreover, a · {t, h} = a · {sk, h} = a · {gk, h} = a ·k · gk−1. As g does not
vanish near p, we see that jt is an isomorphism between E1

p and E2
p .

The last lemma shows in particular that E1 and E2 are locally free
OΣ-modules of rank µ outside of the origin. Here µ is the Milnor number
of the transversal curve singularity. We are now able to proceed the
calculation of the cohomology of the operator δ : E1 → E2. From the
fact that the function t is finite on Σ and the last lemma we obtain

Theorem 3.44. Denote by Ẽi (i = 1, 2) the germ at zero of the direct
image sheaf t∗E i. Denote the induced differential t∗δ : Ẽ1 → Ẽ2 again
by δ and the mapping t∗jt : Ẽ1 → Ẽ2 by i. The quadruple (Ẽ1, Ẽ2, i, δ)
defines an (E,F )-connection in the sense of [Mal74].

Proof. We are in the following situation: The modules Ẽi are OC,0-
modules of rank µ, so it remains only to verify the following relation
between t, i and δ:

δ(t · e) = i(e) + t · δ(e)
for any e ∈ E1. It suffices to do this for the sheaves E i, that is, we
have to show that for any Φ ∈ C1

L the following relation holds in C2
L:

δ(t ·Φ) = jt(Φ)+ t ·δ(Φ). The function t ∈ OL can be seen as an element
in C0

L, then this relation follows immediately from the fact that (C•, δ,∧)
is a differential graded algebra.

To simplify notations, we set Ẽ = Ẽ1 and F̃ = Ẽ2. To proceed
our calculations, we need to work with torsion free modules. This is
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not really a restriction: The morphisms δ, jt : Ẽ → F̃ obviously send
Tors(Ẽ) to Tors(F̃ ), so that the cohomology on the torsion part can
be calculated explicitly (note that the torsion submodules are artinian).
Therefore, we set E := Ẽ/Tors(Ẽ) and F := F̃ /Tors(F̃ ) and obtain an
(E,F )-connection on the free modules E, F .

We still can not compute the cohomology of δ directly because it
is a map of (infinite-dimensional) vector spaces. However, the (E,F )
connection defines a meromorphic connection ∇t on the localization
M := E ⊗C C{t}[t−1] together with two lattices which are the images
of E (resp. F ) in M = E ⊗C C{t}[t−1] (= F ⊗C C{t}[t−1]). Recall
that a lattice is a C{t}-submodule of M of rank (say k) equal to the
dimension of M as C{t}[t−1]-vector space. To any such lattice E in
(M,∇t) is associated a set of complex numbers α1, . . . , αl with mul-
tiplicities nα1 , . . . , nαl

such that
∑l
i=1 nαi = k. This set is called the

spectrum of E in (M,∇t). We recall its definition. Set

Cα :=
{
m ∈ M|∃N ∈ N : (t∇t − α)Nm = 0

}
V≥α :=

⋃
β∈[α,α+1) C{t}Cβ

V>α :=
⋃
β∈(α,α+1] C{t}Cβ

The spaces Cα are finite-dimensional C–vector subspaces of M whereas
V>α and V>α are C{t}-modules of rank k, hence lattices. Any section
m ∈ M can be decomposed in a series

m =
∑
α

s(m,α)

where s(m,α) ∈ Cα. A homogeneous element s(m,α) is also called
elementary section. For any m ∈ M, the non-zero section s(m,α) with
minimal α (here one has to choose an order in C compatible with the
usual order in R) is called principal part of m. Then one defines

nα := dimC

E ∩ V ≥α
E ∩ V >α + tE ∩ V ≥α
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Therefore, the spectrum encodes the dimension of the spaces of principal
sections of elements from E. The reader might consult [Var83], [Her02]
or [Sab02] for further detail. Let us denote the spectrum by Sp(E,M).
If α ∈ Sp(E,M) is a spectral number, then e2πiα is an eigenvalue of
the monodromy operator T : H → H , where H is the vector space of
multivalued sections of M which are flat with respect to ∇t. Note that
the monodromy does not depend on the lattice, but the spectral numbers
do, and this additional information consists in the choice of a logarithm
of a given monodromy eigenvalue (the choice of an integer by which the
logarithm can be shifted). The following lemma shows how the spectral
numbers can be used to calculate the cohomology of the operator δ.

Lemma 3.45. Let an (E,F, δ, j)-connection be given and set M :=
E ⊗C C{t}[t−1] as above. Denote the image of E in M again by E.
Then we have

ker(E δ−→ F ) ∼=
⊕
α∈Z≤0

E ∩ V ≥α
E ∩ V >α + tE ∩ V ≥α

Moreover, the dimension of the cokernel is given by the index formula

dimC

(
coker (E δ−→ F )

)
= dimC

(
ker(E δ−→ F )

)
−rank(E) + dimC (coker (j))

Note that here we suppose that E and F are free, otherwise the dimension
of the torsion parts has to be taken into account.

Proof. The “⊃” part is clear: Given a principal part e in C−k ∩ E for
k ∈ N, one sees immediately that tke is annihilated by t∇t and hence by
∇t as t is invertible on M. Conversely, let e be an element of the kernel
of δ, i.e., ∇te = 0, then t∇te = 0. Then by choosing a basis of E and
decomposing we can suppose that e = a(t)e0 where e0 is a basis vector.
Let a(t) = tkε, where k is the order of a (so ε is a unit). Then

0 = (t∇t)(tkεe0) = tk ((kε+ tε′)e0 + t∇te0)

This implies that we obtain a non-zero class in the quotient(
E ∩ V ≥−k

)
/
(
E ∩ V >−k + tE ∩ V ≥−k

)
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which shows the first statement. A proof of the index formula can be
found in [Mal74].

By this result, we are left with the calculation of the spectral num-
bers. This is possible due to the following observation, a proof of which
can be found in [Her02] (the result is of course much older).

Lemma 3.46. Let E ⊂ (M,∇t) be a logarithmic (or saturated) lat-
tice, i.e., suppose that E is stable under the action of the operator t∇t.
Then the spectral numbers of Sp(E,M) are the eigenvalues of the residue
endomorphism, that is, of the endomorphism

t∇t : E/tE −→ E/tE

This simplifies the whole situation: the residue endomorphism is just
a map of finite-dimensional vector spaces, which can easily be calcu-
lated. Returning to our situation of the (E,F )-connection coming from
the modules E i on the singular locus of the lagrangian variety, the prob-
lem of calculating the cohomology would be solved if the lattice E were
logarithmic. Unfortunately, this is not the case in general, but we can
overcome this difficulty using the following trick. Suppose that there is
a sublattice E′ ⊂ E such that E′ is logarithmic. By the very definition
of a lattice, the quotient E/E′ is artinian, so one can calculate the coho-
mology of δ on E/E′ explicitly. Using the above lemma, the spectrum
Sp(E′,M) gives the cohomology of δE′ . It rests to show that in our
situation, there is always such a lattice E′.

Lemma 3.47. Let L be a strongly quasi-homogeneous lagrangian surface
singularity. Consider the above defined (E,F )-connection (E,F, δ, j).
Then the modules E, F are naturally graded vector spaces and the maps
δ and j are homogeneous morphisms such that deg(tδ) = deg(j). More-
over, there is a submodule E′ ⊂ E with (tδ)(E′) ⊂ j(E′).

Proof. It is clear that the grading on OM induces a grading on Ω•L,
C•L and thus on the quotient E•. Note that the exterior differential in
the de Rham complex is homogenous of degree zero, but the degree of
δi : CiL → Ci+1

L is −deg(J) where J : Ω1 → C1
L. Thus also deg(δ : E1

L →
E2
L) = −deg(J). If we choose the projection t ∈ OL to be homogeneous,
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then the C{t}-modules Ei are graded and the mappings δ and j are
homogenous. It is an easy calculation that deg(tδ) = deg(j).

We know from lemma 3.43 on page 97 that the cokernel of j is ar-
tinian. This implies that there is a certain degree d such that j maps
⊕i≥dE1

i isomorphically to ⊕i≥dE2
i+deg(j). Then E′ := ⊕i≥dE1

i is the
lattice we are looking for.

The results presented up to this moment implies the following al-
gorithm to calculate the first two cohomologies of the complex C•L,0 for
a quasi-homogeneous surface singularity: The first point is to compute
presentations of the modules CiL,0 and ΩiL,0 as OL,0-modules as well as
the morphisms J i : ΩiL,0 → CiL,0 for i = 1, 2 and the morphism jt for
a convenient function t (which must not vanish on any component of
the singular locus of L). The calculation of these modules is standard
in computer algebra (see [GP02] or [EGSS02]). On the other hand,
computing the morphisms J and jt involves an implementation of the
Poisson-bracket which can of course be done. Nevertheless, J and jt are
OL-linear thus representable by a matrix. However, this is not true for
δ which makes the whole thing complicated.

We obtain presentations for E i and jt (seen as a OL,0-linear map
from E1 to E2). Now one uses the decomposition in graded parts of
E i to choose a submodule E ′ corresponding to the sublattice E′ and
calculates the residue endomorphism in any base of E′/tE′ as well as
the operator δ on the (artinian) modules E/E′ and Tors(Ẽ). Then the
index formula allows us to deduce the dimension of the cokernel of δ,
that is, the dimension of the second cohomology of C•L.

In the sequel, we will list results for the following examples: the two-
dimensional open swallowtail Σ2 ⊂ K4, conormal cones of plane curves
(these are also surfaces in four space) and some integrable systems in
K4. For the open swallowtail, we obtain.

Theorem 3.48. The dimensions of the first and second cohomology of
C•Σ2,0

are

dim
(
H1(C•Σ2,0)

)
= 0 dim

(
H2(C•Σ2,0)

)
= 1
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Moreover, the spectral numbers for a suitable chosen lattice E′ are:

Sp(E′,M) =
{

8
10
,
13
10
,
22
10
,
27
10

}
For conormal cones, we present in the following table results for T ∗CC

2

where C is a curve singularity. The exponents added to some values of
the spectrum are the multiplicities of that spectral number if different
from one. If there are no spectral numbers given, then the modules E i

are artinian.

C dim(H1) dim(H2) Sp(E′,M)

y2 − x3 0 0

y2 − x5 0 0 4
5
, 16

5

y3 − yx3 0 0 9

y3 − x5 0 0 29
5

, 41
5

y3 − x7 0 0 37
7

, 61
7

, 69
7

, 85
7

, 93
7

, 117
7

y5 − x7 0 0 116
7

, 132
7

, 148
7

, 164
7

,

y3 − x6 1 1 7
2
, 10

2

(2)
, 13

2

xy(x + y)(x − y) 1 1

xy(x + y)(x − y)(x + 2y) 2 2

Finally, we consider integrable systems. We return to the examples in
K4 from table 1.4 on page 36, given by coefficients (λ, µ) and exponents
(α, β, γ, δ).

λ, µ α, β, γ, δ dim(H1) dim(H2) Sp(E′,M) (with multiplicity)

1, 0 0, 0, 1, 1 2 1 3(4)

1, 2 0, 2, 1, 0 3 2 2
2

(2)
, 3

2

(2)
, 4

2

(2)
, 5

2

(2)
, 6

2

(2)

1, 3 3, 0, 0, 1 4 3 3
3

(2)
, 5

3

(2)
, 7

3

(4)
, 9

3

(4)
,

11
3

(4)
, 13

3

(2)
, 15

3

(2)

1, 4 4, 0, 0, 1 5 4 4
4

(2)
, 7

4

(2)
, 9

4

(2)
, 10

4

(2)
, 12

4

(2)
, 13

4

(2)
,

14
4

(2)
, 15

4

(2)
, 16

4

(2)
, 17

4

(2)
, 18

4

(2)
, 19

4

(2)
,

20
4

(2)
, 22

4

(2)
, 23

4

(2)
, 25

4

(2)
, 28

4

(2)
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In all of the above examples, there is an astonishing symmetry pop-
ping up. Comparing the above situation with the classical theory of
the spectral numbers of a hypersurface singularity (which is the spec-
trum of the Brieskorn lattice inside the Gauß-Manin system), one is led
to look for a non-degenerate form on the module (M,∇), i.e., a form
(·, ·) : M ⊗ M → C{t}[t−1] such that d(·, ·) = (∇·, ·) + (·,∇·). This
would imply the symmetry of Sp(F,M) for any lattice F ⊂ M, partic-
ular for the lattice E. Therefore, although the lattice E′ we have used
to calculate the spectral numbers is not canonically associated to the
lagrangian surface L ⊂ C4, the observed symmetry is an important hint
to the existence of such a duality. One might speculate that it comes
(much like in the case of a hypersurface singularity) from the topology
of the lagrangian singularity. However, as we are dealing with arbitrary
varieties (non-complete intersections which might not even be smooth-
able), it is much more difficult to use this kind of argument. What we
know is that locally around a point p ∈ Sing(L)\{0}, L is a product of a
curve Cp with a line. Hence one can consider the cohomologyH1(Cpε,C)
of a (canonical) Milnor fibre of such a transversal curve. This is a vector
space of a dimension which equals the rank of the modules E i at the
point p (see the proof of lemma 3.43 on page 97). Speculating further in
this direction, we might state the following

Conjecture 3.49. Let L ⊂ C4 a quasi-homogenous lagrangian surface
singularity with one-dimensional singular locus, which we denote by Σ.
Let µ be the Milnor number of its transversal singularity. Then there
is a vector bundle H on Σ∗ := Σ\0 of rank µ such that each fibre is
canonically isomorphic to H1(Cpε,C). This bundle comes equipped with
a flat structure, induced by the symplectic structure of M . Moreover,
choosing a projection t ∈ OL as above one obtains a meromorphic bundle
H on C∗ and the modules E and F are both locally free extensions over
the origin. The constructed connection ∇ on M (i.e., the connection
coming from the morphism δ) coincides with the (conjectured) connection
on the topological bundle H. Finally, the Seifert form on the Milnor fibre
induces a non-degenerate pairing on M which explains the symmetry of
the spectral numbers.

We only remark that the main difficulty in proving this speculation



106 Lagrangian subvarieties

is the construction of the topological bundle. It does exist locally around
any point p (this is evident due to the product structure), but one needs
to construct it without making any choices, only in terms of the ideal I
which defines L.



Chapter 4

Isotropic Mappings

This chapter contains mainly calculations of deformation spaces for some
simple examples of isotropic mappings. We call any map i from a n-
dimensional to a 2n-dimensional symplectic manifold isotropic iff the
pullback i∗ω of the symplectic form vanishes. Then the image of this
map is obviously a lagrangian singularity, but the deformation theory of
the map differs considerably from that of its image (which we developed
in the last chapter). Unfortunately, there is for the moment no good
algorithm (even in the quasi-homogeneous case) which allows one to
calculate systematically the deformation spaces. Therefore, we have to
restrict ourselves to examples sufficiently simple to be computed by hand.
We will mostly be concerned with germs of maps from K2 to K4, and
we assume them to have rank one. This simplifies the computations.

4.1 Generalities and basic examples

When studying a mapping f : X → Y between analytic spaces, or even
a germ of such a mapping at points x ∈ X and f(x) ∈ Y , the abstract
theory of deformations as developed in the second chapter becomes much
more complicated. The main reason is that all objects (modules, com-
plexes and so on) which one has to consider involve two spaces (X and
Y ) and should therefore “live” on both of them. This idea can indeed
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be carried out by using the concept of sites and topoi. One can develop
a variant of the cotangent complex in this setup. The interested reader
might consult [Ill71], [Ill72] or [Buc81]. However, we will consider a much
simpler situation, namely a germ of a mapping

f : (Kn, 0) −→ (Km, 0)

which we might suppose to be isotropic (in case that m = 2n). There are
several group actions which one can allow, corresponding to the so-called
R, L, R−L-equivalence etc. We will use R−L-equivalence. Therefore,
the corresponding deformation functor Def f associates to S ∈ Art an
equivalence class of map germs

F : (Kn × S, 0) −→ (Km × S, 0)

where F1 and F2 are isomorphic iff F1 = Φ ◦ F2 ◦ φ for analytic iso-
morphisms Φ ∈ AutS(Km) and φ ∈ AutS(Kn). In the symplectic case
(m = 2n, Km symplectic and f isotropic) recall the definition of the
functor IsoDef f (definition 2.6 on page 56): elements of IsoDef f (S)
are isomorphism classes of map germs as above with (F ◦ π)∗ω = 0
(π : K2n × S → K2n being the projection) with F1 equivalent to F2 iff
F1 = Φ ◦ F2 ◦ φ where Φ ∈ SympS(Km) and φ ∈ AutS(Kn). Obviously,
Def f is unobstructed. However, this is not true for IsoDef f as we will
see in the sequel.

The tangent space of Def f is known to be

T 1(f) ∼=
f∗ΘKm,0

df(ΘKn,0) + ΘKm,0

where df(ΘKn,0) is the image of the derivative df : ΘKn,0 → f∗ΘKm,0

of the map f . It is an important observation that this is not an OKn,0-
module but only an OKm,0-module (because of the term ΘKm,0 in the de-
nominator). The structure of the tangent space of IsoDef f is more sub-
tle. For notational simplicity, we denote (K2n, 0) by (M, 0) and (Kn, 0)
by (N, 0) . Let LV f be the following vector subspace of f∗ΘM,0:

LV f :=

{
2n∑
i=1

gi∂xi ∈ f∗ΘM,0 | (fi + εgi)∗i=1,...,2nω = 0

}



4.1 Generalities and basic examples 109

where x1, . . . , x2n are coordinates on (M, 0). These are the deformed
isotropic mappings. Denote by HamM,0 the sub-vector space of ΘM,0

consisting of germs of hamiltonian vector fields on M . Then HamM,0 lies
naturally in LV f : A deformation of f by an element Xh ∈ HamM,0 ⊂
ΘM,0 ⊂ f∗ΘM,0 is still isotropic, thus an element of LV f . Moreover, the
derivative df maps ΘN,0 into LV f (this follows directly from the isotropy
of f). Then we have

Lemma 4.1. The tangent space of IsoDef f is

T 1
IsoDef (f) =

LV f

df(ΘN,0) + HamM,0

Note that this is only a K-vector space.

To illustrate the above facts, we calculate the most basic example,
namely, a map germ f : (K, 0) → (K2, 0) defining a monomial curve.

Lemma 4.2. Let p, q ∈ N, gcd(p, q) = 1, p < q and

f : (K, 0) −→ (K2, 0)
t 	−→ (tp, tq)

be an irreducible germ of a monomial curve singularity. Then we have

T 1(f) ∼= T 1
IsoDef (f) ∼= Cδ

with δ = (p− 1)(q − 1)/2.

Proof. This can essentially be shown by a close look at a monomial
diagram. We will first recall an elementary proof of the equality

dimT 1
IsoDef (f) = δ

The following facts will be used: let n be a natural number greater or
equal to (p − 1)(q − 1), then there exists r, s ∈ N := {0, 1, 2, . . .} such
that rp+sq = n. Moreover, in the interval [0, (p−1)(q−1)−1] there are
exactly (p− 1)(q − 1)/2 numbers admitting such an representation and
they are distributed in the following way: if n ∈ [0, . . . , (p−1)(q−1)−1]
and n = rp+sq for some r, s ∈ N, then the number n′ := (p−1)(q−1)−n
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dx

d
y

1

1

2

2 p-1

q-1

(p-1)(q-1)

(p-1)(q-1)

Figure 4.1: Monomial diagram

(this is n “reflected” at (p−1)(q−1)/2) can not be represented as r′p+s′q
for r′, s′ ∈ N. Choosing coordinates x, y in K2 we have

T 1
Def (f) =

K{t}∂x ⊕K{t}∂y
K{t}(ptp−1, qtq−1) + K{tp, tq}∂x + K{tp, tq}∂y

It follows that a deformation of type trp+sq∂x or trp+sq∂y is trivial
because the function trp+sq is in K{tp, tq}. So a non-trivial deforma-
tion consists of terms tk∂x or tk∂y such that k is not representable as
k = rp+sq. These are a priori 2 (p−1)(q−1)

2 = (p−1)(q−1) deformations.
But the submodule K{t}(ptp−1, qtq−1) causes further identifications: a
term tk∂x is equivalent to q

p t
k+q−p∂y whenever k ≥ p− 1. So in order to

count deformations properly we proceed as follows (see figure 4.1): We
first take all monomials from the lower row which are not trivial (i.e., not
representable as trp+sq), the we add those from the upper row not related
to any of the lower row (those of the form tk∂x with 0 < k < p−1, these
are nontrivial because k < p < q). These are (p−1)(q−1)/2+(p−2) de-
formations not related by an isomorphism. But in the first group (those
from the second row) we have some monomials isomorphic to a trivial
deformation of type tl∂x. A proper count shows that this are exactly
p− 2 ones. So the result is

dim T 1(f) =
(p− 1)(q − 1)

2
= δ
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To prove the desired formula for lagrangian deformations, we assume the
symplectic form to be ω = dx∧dy. Any deformation of f is automatically
isotropic, so LV f = f∗ΘM,0. This leads to:

T 1
IsoDef (f) =

K{t}∂x ⊕K{t}∂y
K{t}(ptp−1, qtq−1) + {(−∂yh ◦ f, ∂xh ◦ f) |h ∈ OK2,0}

(4.1)
It therefore suffices to prove the following: Let trp+sq∂x or trp+sq∂y be
a deformation with r, s ∈ N. Then it is trivial not only as an ordinary
but also as an lagrangian deformation. Let’s treat the case trp+sq∂x, the
other one is similar: We have the following equalities

trp+sq∂x = xrys∂x = −∂y(−
1

s+ 1
xrys+1)∂x

By the second relation in the denominator of formula 4.1, the last term
is equivalent to

∂x(−
1

s+ 1
xrys+1)∂y = − r

s+ 1
xr−1ys+1∂y =

− r

s+ 1
trp+sq−p+q∂y = − r

s+ 1
t(r−1)p+(s+1)q∂y

On the other hand, it follows from the first relation in equation 4.1 that
that

− r

s+ 1
t(r−1)p+(s+1)q∂y = − r

q(s+ 1)
t(r−1)p+sq+1qtq−1∂y ∼=

− pr

q(s+ 1)
t(r−1)p+sq+1tp−1∂x = − r

q(s+ 1)
trp+sq∂x

This is a contradiction, we get that the deformations

− r

q(s+ 1)
trp+sq∂x and trp+sq∂x

are equivalent, which is impossible. So they are zero.

For lagrangian deformations of a curve (C, 0) (deformation of the
image of an isotropic mapping f : (K, 0) → (K2, 0)) we had (see for-
mula 2.1 on page 53) that

dim
(
T 1
LagDef (C, 0)

)
= µ > τ = dim

(
T 1
Def (C, 0)

)
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These numbers coincide in the quasi-homogeneous case, so the result on
curves of type t 	→ (tp, tq) is not too surprising. However, if the image
curve C is not quasi-homogenoues, then the cohomology H1(Ω̃C,0) is
not zero. Therefore, we can consider the lagrangian family (C × S, 0) ⊂
((M, 0), ωS) where ωS is a non-trivial deformation of the symplectic form.
Equivalently, there is an analytically trivial family (CS , 0) ⊂ (M × S, 0)
which is not trivializable by a symplectic automorphism. As the family
CS is trivial in the analytic category, it must be a δ-constant deformation.
Therefore, it can be realized by a deformation of the normalization (the
isotropic mapping) f , which is also trivial for the functor Def f but not
for IsoDef f . However, as for lagrangian subvarieties, the calculation
of the deformation spaces for non-quasihomogenous examples is rather
difficult.

The next example we are discussing are mappings having a decom-
posable lagrangian space as its image. Here we will see that there is no
rigidity principle as in the case of deformations of the image: There-
fore, we expect T 1

IsoDef (f) to be finite only when T 1
Def (f) is finite.

We use the following notations: Let M := K2n+2 with coordinates
(p0, q0, p1, . . . , pn, q1, . . . , qn) and symplectic form ω =

∑n
i=0 dpi ∧ dqi,

write M ′ for the symplectic reduction of M with respect to p0. Denote
by N the space Kn+1 with coordinates x1, . . . , xn, t and by N ′ the space
Kn with coordinates x1, . . . , xn.

Theorem 4.3. Consider the maps

f : (N, 0) −→ M
(x1, . . . , xn, t) 	−→ (0, t, f1, g1, . . . , fn, gn)

with fi ∈ ON ′,0 and

f ′ : (N ′, 0) −→ M
(x1, . . . , xn) 	−→ (f1, g1, . . . , fn, gn)

Suppose f ′ to be isotropic, i.e. f ′∗ω′ = 0 which implies f∗ω = 0. Then
we have

T 1
IsoDef (f) ∼= T 1

IsoDef (g) ⊗K{t}
Proof. The elements of LV f ⊂ f∗ΘM,0 are vector fields of type

r0∂p0 + s0∂q0 + r1∂p1 + s1∂q1 . . .+ rn∂pn + sn∂qn



4.1 Generalities and basic examples 113

with ri, si ∈ OKn,0. These coefficients satisfy a certain system of differ-
ential equations which is given by the vanishing of the following two-form
on Kn:

dr0 ∧ dt+
n∑
i=1

(dfi ∧ dsi + dgi ∧ dri)

We calculate in the quotient T 1
IsoDef (f), thus we can assume s0 to be

zero, as there is a term of type K{x1, . . . , xn, t}∂q0 in the denominator.
The lagrangian condition can be restated as

dxr0 ∧ dt =
n∑
i=1

(dxsi + ∂tsidt) ∧ dfi + dgi ∧ (dxri + ∂tridt)

where dx denotes the differential with respect to x. This equals the two
conditions: ∑n

i=1 (dxsi ∧ dfi − dgi ∧ dxri) = 0∑n
i=1 (∂tsidt ∧ dfi + dgi ∧ ∂tridt) = dxr0 ∧ dt

Now if (r, s) := (r1, s1, . . . , rn, sn) is in T 1
IsoDef (f

′)⊗K{t}, then it can be
decomposed into (r, s) =

∑∞
j=0(r, s)jt

j with (r, s)j ∈ T 1
IsoDef (g). Then

the first condition is obviously satisfied: it is just the fact that (r, s)j
defines a lagrangian deformation of f for each j. The second equality
can be written as

n∑
i=1

(∂tridgi − ∂tsidfi) = dxr0

so by the Poincaré lemma, applied to the differential dx, we must have

dx

n∑
i=1

(∂tridgi − ∂tsidfi) = 0

in order to get a solution. But this means

∂t

n∑
i=1

(dxri ∧ dgi − dxsi ∧ dfi) = 0
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which is just the derivative of the first condition and therefore automat-
ically satisfied. Summarizing, we can assume that T 1

IsoDef (f) is given
as

T 1
IsoDef (f) =

r1∂p1 ⊕ . . .⊕ rn∂pn ⊕ s1∂q1 ⊕ . . .⊕ sn∂qn∑n
i=1 ∂xi(f1, g1, . . . , fn, gn) +

{
XH |H ∈ OK2n+2,0

}
where XH is the Hamilton vector field associated to H . As we have
already seen, each representative (r, s) of a class in this quotient may
by decomposed into a series (r, s) =

∑∞
j=0(r, s)

(j)tj , where (r, s)(j) is a
lagrangian deformation of f ′. It remains to show that (r, s) is trivial
iff each (r, s)(j) is a trivial deformation of f ′. But this is clear, because
the first terms in the denominator do not contain the variable t and in
the second one (the Hamilton field, which may contain p0 and q0) we do
not derive with respect to p0 or q0, so the whole denominator may be
decomposed as a series in t, too.

4.2 Corank 1 mappings
In this section we focus on isotropic mappings which are of corank one,
that is, map germs from (Kn, 0) to (K2n, 0) such that the differential has
rank n− 1 at the origin. The particular case n = 2 has been studied in
[Giv86] where it is proved that open Whitney umbrellas form an open
subset of the space of all isotropic mappings from R2 to R4 (in the C∞-
topology). Givental also conjectured that this subset is dense. This has
been proved in [Ish92]. We also discuss the smoothness of the functor
IsoDef f in case that f is of corank one and for some other examples.

Let us start be recalling (see theorem 1.18 on page 33) that the open
Whitney umbrella W2 in K4 is the image of the mapping

n : K2 −→ K4

(s, t) 	−→ (−3st, 2t, s2, s3)

Equations for the image have been given in chapter one. In the following
paragraphs, we check that n is indeed a stable map, at least in the formal
sense (this is of course well known).

Lemma 4.4. We have T 1
IsoDef (n) = 0.
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Proof. This calculation will serve as a model for further computations
of isotropic mappings from a plane into the four-space. In contrast to
the case of curves, we have to take into account the isotropy condition.
However, the fact that n is of corank one makes it easy to fulfill this
condition. More precisely, any infinitesimal deformation ñ is given as
(s, t) 	→ (−3st+ εa, 2t+ εb, s2 + εc, s3 + εe). with a, b, c, e ∈ K{s, t} (we
avoid the use of the letter d which denotes the exterior differential). The
deformed map ñ is isotropic iff d(−3st + εa) ∧ d(s2 + εc) + (2t + εb) ∧
(s3 + εe) = 0. From n∗ω and ε2 = 0 we get that this is equivalent to

−3d(st) ∧ dc+ da ∧ d(s2) + 2dt ∧ de+ db ∧ d(s3) = 0

Therefore the space LV n is given by all quadruples (a, b, c, e) satisfying
this condition. However, we are only interested in T 1

IsoDef (n), which is
a quotient of LV n. We have

T 1
IsoDef (n) =

LV n

r2(−3t, 0, 2s, 3s2) + r2(−3s, 2, 0, 0) +Xh ◦ n

with r1 and r2 arbitrary functions from K{s, t} and Xh the hamiltonian
vector field of a function h ∈ K{x, y, z, w}. Therefore, any deformation
of type b∂y (recall that LVn ⊂ n∗ΘK4,0) is equivalent to a deformation
of type a∂x. We get the following simplification: Denote by L̃V n the
subspace of K{s, t}∂x⊕K{s, t}∂z⊕K{s, t}∂w consisting of triples (a, c, e)
such that −3d(st) ∧ dc + da ∧ d(s2) + 2dt ∧ de = 0. This is obviously
equivalent to

∂se =
3
2
∂sc−

3
2
∂tc+ s∂ta

and we have

T 1
IsoDef (n) =

L̃V n
r2(−3t, 0, 2s) + r2(−3s, 2, 0) + (−∂zh, ∂wh, ∂xh) ◦ n

We see that once we are given a and c, the remaining component e is
uniquely determined by the isotropy condition, and for any (a, c) there is
(up to constants) a unique emaking the deformed map isotropic. Thus it
will be sufficient to calculate a vector space basis for the (a, c)-subspace
of L̃V n representing the quotient T 1

IsoDef (n). A system of generators of
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this space is given by all monomials sktl∂x and sktl∂z . We have to show
that they are all equal to zero in the quotient. We will use the following
principle: We take any monomial m and calculate relations (elements of
the denominator of the above formula for T 1

IsoDef (n)) involving m. Here
a relation between monomials m1 ∼ m2 means that the difference lies
in the denominator. Then it may happen that we get a relation of type
m ∼ λm where λ ∈ K is different from one. Thus the difference and
therefore also m itself lies in the denominator (as everything is linear
over K), i.e., m is zero in T 1

IsoDef (n). We start with m = s2ktl∂x. We
have

m = zk
(
y
2

)l
∂x = −∂z

(
− 1
k+1

(
y
2

)l
zk+1
)
∂x

∼= ∂w

(
− 1
k+1

(
y
2

)l
zk+1
)
∂y + ∂x

(
− 1
k+1

(
y
2

)l
zk+1
)
∂z = 0

Thus the deformation given by m is trivial.
Now let m := s2ktl∂z . This is a bit more complicated, but a very

typical calculation as we will see later.

m = zk
(
y
2

)l
∂z = ∂x

(
x
(
y
2

)l
zk
)
∂z

∼= ∂w

(
x
(
y
2

)l
zk
)
∂y − ∂z

(
x
(
y
2

)l
zk
)
∂x

∼= −kzk−1x
(
y
2

)l
∂x = −ks2k−2(−3st)tl∂x

= 3t
(
ks2k−1tl

)
∂x ∼= 2ks2ktl∂z

We are precisely in the situation described above: as 2k �= 1, we conclude
that m is zero in the quotient. Lets now m := s2k+1tl∂z. Then

m = 2s
(

1
2
s2ktl
)
∂z ∼=

3
2
s2ktl∂z

But this last term was already seen to be zero. The last monomial is of
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type m := s2k+1tl∂x. Here we have

m ∼= 2
3s

2ktl∂y = 2
3z
k
(
y
2

)l
∂y ∼=

= 2
3∂w

(
wzk
(
y
2

)l)
∂y ∼= 2

3∂x

(
wzk
(
y
2

)l)
∂z − 2

3∂z

(
wzk
(
y
2

)l)
∂x

∼= − 2
3kwz

k−1
(
y
2

)l
∂x = − 2

3ks
3s2k−2tl∂x = − 2

3ks
2k+1tl∂x

This shows that also in this case m is a trivial deformation. The proof
is finished.

This calculation also yields the idea of the proof for the following
fact.

Theorem 4.5. Let i : (K2, 0) → (K4, 0) the germ of any isotropic
mapping of corank one. Then IsoDef i is smooth.

Proof. Let i be given as (s, t) 	→ (a, b, c, e) with ∂te non-vanishing at
the origin. Then by a coordinate change in K2 (this does not affect the
symplectic form) we can assume that e = t. Now it is easy to see that
any deformation over Spec(An) = Spec(K[ε]/εn+1) is equivalent to one
of the following type

in : (K2, 0) × Spec(An) → (K4, 0)

(s, t, ε) 	→ (a+
n∑
k=1

εkak, b+
n∑
k=1

εkbk, c+
n∑
k=1

εkck, t)

with ak, bk, ck ∈ K{s, t}. A deformation over Spec(An+1) of type in +
(an+1ε

n+1, bn+1ε
n+1, cn+1ε

n+1, t) (one can always reduce to this case as
above) is lagrangian iff

dt ∧ dbn+1 =
n+1∑
k=0

dai ∧ dcn+1−i + dan+1−i ∧ dci

where we set a0 := a and c0 := c. But this is equivalent to

(∂sbn+1) dt ∧ ds =
n+1∑
k=0

dai ∧ dcn+1−i + dan+1−i ∧ dci
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which can always be satisfied. Therefore, any given deformation over
the space Spec(An) can be extended over Spec(An+1) which gives the
smoothness of IsoDef i by lemma A.21 on page 155.

The following example, taken from [Ish96], shows that there are
corank two mappings having obstructed deformations.

Theorem 4.6. Consider the map-germ

i : (K2, 0) −→ (K4, 0)
(s, t) 	−→ (s2, t2, 0, 0)

Then IsoDef i is not smooth.

Proof. We will exhibit an infinitesimal deformation which cannot be ex-
tended to higher order. Consider

i1 : (K2, 0) × Spec(A1) −→ (K4, 0)
(s, t, ε) 	−→ (s2 + εt, t2, εs, εt)

Obviously, we have i∗1ω = 0, so i1 ∈ LVi. It can be easily checked that
the class of i1 in T 1

IsoDef (i) is non-zero. Any extension i2 of i1 over
Spec(A2) is of the form (s, t, ε) 	→ (s2 + εt+ ε2a, t2 + ε2b, εs+ ε2c, εt+ ε2e)
with a, b, c, e ∈ K{s, t}. Then

i∗2ω = d(s2) ∧ dc+ dt ∧ ds+ d(t2) ∧ de = (1 − 2s∂tc+ 2t∂se)dt ∧ ds

This form is non-zero at the origin for any (a, b, c, e) showing that there
is no isotropic extension of i1 over A2.

Note, however, that in this example the tangent space T 1
IsoDef (i) is

not finite-dimensional. In fact, is is not so obvious how to find examples
of maps of rank zero with finite dimensional tangent space. As explained
before, it is unlikely that maps i where T 1

Def (i) is not finite have finite-
dimensional tangent space for the functor LagDef . So we first have to
look for rank zero maps i such that dim(T 1

Def (i)) < ∞. Consider the
following example

i : (K2, 0) −→ (K4, 0)
(s, t) 	−→ (s3, t3, 1

3st
3 + 1

4 t
4, 1

4s
4 + 1

3s
3t)
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Using standard methods in computer algebra (e.g., calculation of a pre-
sentation of i∗ΘK4,0 as a OL,0-module, where L is the image of i), we
obtain that

dim
(
T 1
Def (i)

)
= 234

It is of course very hard to detect the dimension of dim
(
T 1
IsoDef (i)

)
.

There should be simpler examples (with smaller codimension), but it is
not so clear how to construct them.

4.3 Symplectic and Lagrange stability

In this section we review the results of Givental and Ishikawa concerning
the open Whitney umbrella as generic singularity of corank one isotropic
maps from a plane into four space. We work only over R here. The
results are valid in the C∞-category. First we give a slightly different
definition of the open Whitney umbrella in any dimension. They are
given as the images of the following isotropic mappings.

Definition 4.7. Let n, k ∈ N and k ≤
[

1
2n
]
. Define the following map

fn,k : (Rn, 0) −→ (R2n, 0)
(x1, . . . , xn−1, z) 	−→ (p1, . . . , pn, q1, . . . , qn)

where

qi := xi i = 1, . . . , n− 1

qn := zk+1

(k+1)! +
∑k−1
j=1 xj

zk−j

(k−j)!

pn :=
∑k−1
j=0 xk+j

zk−j

(k−j)!

pi :=
∫ (∂pn

∂xi

∂qn

∂z − ∂qn

∂xi

∂pn

∂z

)
dz i = 1, . . . , n− 1

Obviously, if we take k = 0, we get just a smooth lagrangian (sub-
vector) space in R2n. Moreover, for any n, k, we have that fn,k =
f2k,k × fn−2k,0. Therefore, as before the only interesting case is n = 2k
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and corresponds to the open Whitney umbrella W2k as introduced in
definition 1.18 on page 33. However, by choosing pi and qi as coordi-
nates on R2n, we fix an identification of R2n with T ∗Rn which is not
the same as in the definition of the open Whitney whitney umbrella as
conormal cone of the open swallowtail. For n = 2, it is the cotangent
fibration we have used to calculate the front (the composed Whitney
umbrella, see figure 1.5 on page 32).

Theorem 4.8. Let n = 2k and denote by Iso(Rn,R2n) the space of
isotropic mappings from Rn to R2n of corank one, equipped with the
Whitney C∞-topology. Then there is a dense open set W ⊂ Iso(Rn,R2n)
with the following property: Let i ∈ W be given, then for any point
x ∈ Rn there is a neighborhood U of x in Rn and a neighborhood V of i
in W such that the restriction of all j ∈ V to U ⊂ Rn is symplectically
left-right equivalent to f2n,n.

We will give the main ideas of Ishikawa’s proof without carrying out
all details. The first point is the following equivalence between isotropic
map germs and germs of parameterized fronts. First fix an identification
of R2n with T ∗Rn, denote the base space by B and by π the projection
T ∗B → B. Moreover, we abbreviate the source Rn of the isotropic maps
by N . Then for any ϕ ∈ Iso(N,T ∗B) we have the generating function
F ∈ EN,0, i.e., a function such that de = ϕ∗α, where α is the Liouville
form on T ∗B (see the definition on page 20). Set ψ := π ◦ ϕ. We
say that two maps ϕ,ϕ′ ∈ Iso(N,T ∗B) are Lagrange equivalent iff they
are symplectically left-right equivalent and if the symplectomorphism
respects the bundle structure given by π.

Lemma 4.9. Two isotropic maps ϕ,ϕ′ ∈ Iso(N,T ∗B) are Lagrange
equivalent iff there is σ ∈ Aut(N), τ ∈ Aut(B), and a function S ∈ EB,0
such that

τ ◦ ψ′ = ψ ◦ σ and F = F ′ ◦ σ + S ◦ ψ

Proof. Suppose first that ϕ and ϕ′ are equivalent. Then there is an
automorphism σ of N and Φ ∈ Symp(T ∗B) respecting the fibration
given by π such that ϕ′ ◦ σ = Φ ◦ ϕ This implies that Φ∗α = α+ π∗dS̃.
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Hence,
d(σ∗F ′) = σ∗ϕ′∗α =

ϕ∗
(
α+ π∗dS̃

)
= d
(
F + ψ∗S̃

)
Therefore, σ∗F ′ = F + ψ∗S̃ + c for some constant c and by setting
S = c− S̃ we obtain σ, τ and S as required. On the other hand, suppose
σ, τ and S be given. Then Φ := π∗τ + dS is a symplectomorphism
respecting the bundle structure and we have Φ∗α = α+π∗dS̃. It follows
that

(Φ ◦ ϕ ◦ σ−1)∗α = (ϕ ◦ σ−1)∗(α+ π∗dS̃) =

σ−1∗(dF − dψ∗S) = σ−1∗d(σ∗F ′) = dF ′ = ϕ′∗α

The composition of both ϕ′ and Φ ◦ ϕ ◦ σ−1 with π equals ψ′ and the
pullback of the Liouville form by these two maps coincides, as we have
just proved. Therefore, we also have Φ ◦ ϕ ◦ σ−1 = ϕ′.

Note that we did not made use of the fact that the maps under
consideration are of corank one. In that case, we can say more.

Lemma 4.10. Write the isotropic map ϕ : N → T ∗B in the form

(x1, . . . , xn−1, z) 	−→ (p1, . . . , pn−1, v(x, z), x1, . . . , xn−1, u(x, z))

Then the generating function is

F (x, z) =
∫ z

0

v(x, t)∂tu(x, t)dt+ b(x)

for a function b ∈ ERn−1,0 (the ring of C∞-functions in the variables
x1, . . . , xn−1).

Proof. By definition, dF =
∑n−1

i=1 pidxi+vdu. On the other hand, dF =∑n
i=1 ∂xiF dxi + ∂zF dz, which implies that ∂zF = v∂zu.

The important point is that given functions v and u, one can con-
struct an isotropic mapping of the above type in an essentially unique
way.
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Lemma 4.11. Suppose that v(x, 0) = 0. Then the map

ϕv : N −→ T ∗B
(x1, . . . , xn−1, z) 	−→ (p1, . . . , pn−1, v, x1, . . . , xn−1, u)

where

pi :=
∫ z

0

(∂xiv · ∂tu− ∂xiu · ∂tv) dt i ∈ {1, . . . , n− 1}

is isotropic. Moreover, let ϕ′ : N → T ∗B be isotropic such that π ◦ ϕ′ =
π ◦ ϕ. Then ϕ′ is Lagrange equivalent to the map ϕv′ where v′(x, z) :=
(pn ◦ ϕ′)(x, z) − (pn ◦ ϕ′)(x, 0).

This lemma is proved by comparing the generating functions and
applying lemma 4.9 on page 120. In particular, by taking u := zk+1

(k+1)! +∑k−1
j=1 xj

zk−j

(k−j)! and v :=
∑k−1
j=0 xk+j

zk−j

(k−j)! , one obtains that fv ∼= fn,k.
Now the proof of the theorem goes as follows: First one has to de-

tect the open dense subset W ⊂ Iso(N,T ∗B) all germs of which are
equivalent to the open Whitney umbrella. This set is determined by the
following condition: a map germ ϕ = (p1, . . . , pn−1, v, ψ) is in W iff the
map ψ̃ = (ψ, v) : Rn → Rn+1 is a Morin singularity (see [Mor65]), i.e.,
if the r-jet jrψ̃ is transverse to the Thom-Boardman-symbol Σ1k,0 inside
the r-jet space Jr(V,Rn+1) where r =

[
n
2

]
+ 2 and k ∈ {0, . . . , r} (see,

e.g., [GG80] for definitions). It follows from the last lemma that the set
W defined in this way is open, because Iso(N,T ∗B) carries the topology
induced from C∞(N,T ∗B).

Given a map ϕ ∈W , it is not difficult to see that it is symplectically
equivalent to ϕ̃(x, z) = (p1, . . . , pn−1, v, q1, . . . , qn−1, u) with

qi = xi ∀ i ∈ {1, . . . , n− 1}
qn =: u(x, z) = zk+1

(k+1)! +
∑k−1

j=1 xj
zk−j

(k−j)!
pn =: v(x, z)

for some v with the property that ∂lv
∂zl |(0,0) = 0 for l ∈ {0, . . . , k}. How-

ever, to do this transformation, it is sometimes necessary to interchange
the coordinates p and q, therefore here we only have symplectic but not
Lagrange equivalence.
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It follows that for the generating function F of ϕ we have ∂zF =
v · ∂zu. Now the main point in the proof is to consider the algebra

Hψ = {e ∈ EN,0 | ∃ϕ : de = ϕ∗α , π ◦ ϕ = ψ}

of all generating functions of isotropic mappings lifting a given map
ψ : N → B. One can show that Hψ is naturally a EB,0-module via ψ
and that it is generated by functions 1, H1, . . . , Hk with

Hl :=
∫ z

0

tl

l!

 tk
k!

+
k∑
j=1

aj(x)
tk−j

(k − j)!

 dt
for fixed functions ai ∈ mR{x}. At this point it is necessary to use
Malgrange’s preparation theorem for differential algebras. We obtain
that F = b0 ◦ ψ +

∑k
j=1 bj ◦ ψHj where bi : B → R. This implies (using

the chain rule)

v = (∂qnb0) ◦ ψ +
n∑
j=1

(∂qnbj) ◦ ψHj +
k∑
j=1

bj ◦ ψ
zj

j!

Now it is possible to show that the map

σ : N −→ N

(x, z) −→
{
xi (1 ≤ i ≤ k − 1, 2k ≤ i ≤ n)
b2k−i ◦ ψ (k ≤ i ≤ 2k − 1)

is an automorphism of N leaving Hj (j ∈ {0, . . . , k}) invariant and that
there is an automorphism τ of B such that ψ ◦ σ = τ ◦ψ. Moreover, the
generating function F satisfies

F = b0 ◦ ψ +
k∑
j=1

bj ◦ ψHj = b0 ◦ ψ + F ′ ◦ σ

for a function

F ′ =
k∑
j=1

x2k−jHj =
∫ z

0

 k∑
j=1

x2k−j
tj

j!

 ∂udt
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This is the generating function of the open Whitney umbrella fn,k =
f2k,k which proves the theorem by applying lemma 4.9 on page 120.

We obtain as an immediate consequence.

Corollary 4.12. The only stable isotropic map germ from Rn to R2n

of corank one is the open Whitney umbrella.

We finish this section by remarking that the subsequent papers of
Ishikawa (see in particular [Ish96]) contains also a treatment of the above
questions with respect to the Lagrange automorphism group, that is,
the semi-direct product of Aut(N) with the subgroup of Symp(T ∗B)
consisting of symplectomorphisms preserving the Lagrange fibration π :
T ∗B → B.

4.4 Further computations and conjectures

In this section we study isotropic mappings of corank one which are
not symplectically equivalent to open Whitney umbrellas. We calculate
several invariants attached to them, the most difficult one being its la-
grangian codimension, that is, the dimension of T 1

IsoDef . It seems that
there is always a linear relation between this dimension and some other
invariants. More precisely, we will compare the dimension of T 1

IsoDef (ϕ)
for a mapping ϕ : (K2, 0) → (K4, 0) with the dimension of the usual
T 1
Def (ϕ) as well as with two other invariants: namely, the dimension of

the module of relative differential forms with respect to the mappings ϕ,
i.e., ΩK2,0/ϕ

∗Ω2
K4,0 and with the δ-invariant. Recall that this is the di-

mension of the quotient ϕ∗OK2,0/OL,0 where L := Im(ϕ). The modules
ΩK2,0/ϕ

∗Ω2
K4,0 and ϕ∗OK2,0/OL,0 are supported on the critical locus of

the map ϕ (resp. on its image), therefore, they will be in general artinian
only if the critical locus is isolated.

To obtain other examples than open Whitney umbrellas, we use theo-
rem 4.3 on page 112: Any decomposable isotropic mapping deforms into
infinitely many corank one maps. Take the A2k+1-singularity, crossed
with a line

ϕ : (K2, 0) −→ (K4, 0)
(s, t) 	−→ (s2, t, s2k+1, 0)
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According to lemma 4.2 on page 109 and theorem 4.5 on page 117, the
lagrangian deformations are of the following form

ϕ̃ : (s, t) 	−→
(

s2, t, s2k+1 +
2k∑
i=1

s2k−iεi(t),

2k∑
i=1

2
2(k+1)−is

2(k+1)−iε′i(t)
)

Similar formulas can be written down for deformations of more general
mappings of type (s, t) 	→ (sp, t, sq, 0). Of all deformations obtained in
this way we are mostly interested in those which are quasi-homogeneous
in the variables (s, t). We will consider the following examples of map
germs ϕi : (K2, 0 → (K4, 0)

ϕ1 : (s, t) 	−→
(
s2, t, s3 + st2, 4

3s
3t
)

ϕ2 : (s, t) 	−→
(
s2, t, s5 + st4, 8

3s
3t3
)

ϕ3 : (s, t) 	−→
(
s2, t, s7 + st6, 4s3t5

)
ϕ4 : (s, t) 	−→

(
s2, t, s9 + st8, 16

3 s
3t7
)

ϕ5 : (s, t) 	−→
(
s3, t, s5 + st4, 3s4t3

)
The calculation of the dimensions of T 1

Def (ϕ), ΩK2,0/K4,0 and of the
quotient ϕ∗OK2,0/OL,0 are standard due to the fact that all objects
involved here are modules over either OK2,0, OK4,0 or OL,0. One obtains
the following results (where we denote by l the length of a module and
by t1Def (ϕ) the number l(T 1

Def (ϕ))).

ϕ t1Def (ϕ)) l
(
ΩK2,0/K4,0

)
l

(
ϕ∗OK2,0

OL,0

)
(
s2, t, s3 + st2, 4

3
s3t
)

3 5 2(
s2, t, s5 + st4, 8

3
s3t3
)

10 19 4(
s2, t, s7 + st6, 4s3t5

)
21 55 6(

s2, t, s9 + st8, 16
3

s3t7
)

36 97 8(
s3, t, s5 + st4, 3s4t3

)
28 77 8

As already said, the computation of the dimension of T 1
IsoDef (ϕ) is

much more involved. However, for the first four examples one has the
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advantage that both t and s2 are elements of the ring OL,0 which sim-
plifies everything. We have already seen an example of the calculation
for a map with this property (the open Whitney umbrella), so we will
not reproduce the details here. However, for ϕ5 things are more com-
plicated. Here we have only t, s3 ∈ OL,0. Although the computations
are in principle the same as before, one has to be much more carefully.
Therefore, we will give prove the following theorem in some detail for
the map ϕ5.

Theorem 4.13. The lagrangian codimension of the above maps is as
follows

dimK(T 1
IsoDef (ϕ1)) = 1 ; dimK(T 1

IsoDef (ϕ2)) = 6 ;

dimK(T 1
IsoDef (ϕ3)) = 15 ; dimK(T 1

IsoDef (ϕ4)) = 28 ;

dimK(T 1
IsoDef (ϕ5)) = 20

The proof of the last equality will be given in several steps. By
definition, we have to compute the dimension of

T 1
IsoDef (ϕ5) :=

(a, b, c, e) ∈ O4
K2,0 | ∂se = 3s2∂tc+ t4∂sa− 4st3∂ta

dϕ5(ΘK2,0) + HamK4,0

where HamK4,0 denotes space of Hamilton vector fields on (K4, 0). Sub-
stituting the map we obtain

T 1
IsoDef (ϕ5) =

(
(a, b, c, e) ∈ K{s, t}4 | ∂se = 3s2∂tc+ t4∂sa− 4st3∂ta

)/
(
K{s, t}(3s2, 0, 5s4 + t4, 12s3t3) + K{s, t}(0, 1, t4, 9s4t2)+{
ϕ−1

5 (−∂zh,−∂wh, ∂xh, ∂yh) | h ∈ OK4,0

})

∼=
(a, b, c) ∈ K{s, t}3

K{s, t}(3s2, 0, 5s4 + t4)+K{s, t}(0, 1, 4st3)+ϕ−1
5 (−∂zh,−∂wh, ∂xh)
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Now we have to analyze this quotient “by hand”. We consider only
monomial deformations, as everything is K-linear. The first case is:

s3ptl∂x = xpyl∂x = −∂z
(
−zxpyl

)
∂x ∼= −∂x

(
−zxpyl

)
∂z

= pzxp−1yl = p(s5 + st4)s3p−3tl∂z = p
(
s3p+2tl + s3p−2tl+4

)
∂z

On the other hand, we have for s > 0

s3ptl∂x = 3s2
(

1
3s

3p−2tl
)
∂x ∼= (5s4 + t4)

(
1
3s

3p−2tl
)
∂z

=
(

5
3s

3p+2tl + 1
3s

3p−2tl+4
)
∂z

This is obviously impossible except for the zero coefficient. Note that
the restriction s > 0 is not a real one, as the monomial tl∂x is easily seen
to be a trivial deformation (can be trivialized by the hamiltonian field
X−zyl). So we have:

Lemma 4.14. The deformations s3ptl∂x are trivial for all p, l ∈ N. The
same argument works in the case s3ptl∂z.

Let us analyze the more complicated cases.

s3p+1tl∂x = 3s4t3
(

1
3s

3(p−1)tl−3
)
∂x = 1

3wx
p−1yl−3∂x

= −∂z
(

1
3 − zwxp−1yl−3

) ∼= −zxp−1yl−3∂y + pzwxp−2yl−3∂z

= −
(
s5 + st4

)
s3p−3tl−3∂y + p

(
s5 + st4

)
3s4t3s3p−6tl−3∂z

∼= −
(
s5 + st4

)
s3p−3tl−34st3∂z + p

(
s5 + st4

)
3s4t3s3p−6tl−3∂z

= (3p− 4)
(
s3(p+1)tl + s3p−1tl+4

)
∂z

The first term equals zero in the quotient, as we had already seen. So
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we get

s3p+1tl∂x = (3p− 4)
(
s3p−1tl+4

)
∂z

= (5s4 + t4 − 5s4)(3p− 4)
(
s3p−1tl

)
∂z

∼= 3s2(3p− 4)
(
s3p−1tl

)
∂x − 5(3p− 4)

(
s3(p+1)tl

)
∂z

∼= 3(3p− 4)
(
s3p+1tl

)
∂x

As 3(3p − 4) is never equal to one, this means that we can only have
zero coefficient. Note however that in order to get this result we had to
suppose that l > 2 and p > 0.

Lemma 4.15. s3p+1tl∂x is trivial for l > 2 and p > 0.

We now proceed with deformations of the form s3p+1tl∂z :

s3p+1tl∂z ∼= 1
4s

3ptl−3∂y = 1
4x

pyl−3∂y = −∂w(− 1
4wx

pyl−3)∂y

∼= −∂x(− 1
4wx

pyl−3)∂z = p
4wx

p−1yl−3∂z

= p
43s4t3s3p−3tl−3∂z = 3p

4 s
3p+1tl∂z

Lemma 4.16. The deformation s3p+1tl∂z is trivial provided that l > 2.

An easy consequence is triviality of deformations of the type s3p+2tl∂x
for l > 2:

s3p+2tl∂x = 3s2
(

1
3s

3ptl
)
∂x ∼= 1

3

(
5s4 + t4

)
s3ptl∂z ∼= 5

3s
3(p+1)+1tl∂z

Lemma 4.17. s3p+2tl∂x is trivial for l > 2.

The only case that remains is s3p+2tl∂z. This is similar to what we
already did.

s3p+2tl∂z =
(
5s4 + t4 − t4

)
1
5s

3(p−1)+1tl∂z

∼= 3
5s

2s3(p−1)+1tl∂x − t4 1
5s

3(p−1)+1tl∂z = 3
5s

3ptl∂x − 1
5s

3(p−1)+1tl+4∂z

The first term is obviously trivial, but also the second, as l + 4 > 2.



4.4 Further computations and conjectures 129

Lemma 4.18. s3p+2tl∂z is trivial for all p > 0.

Now we have to calculate the exceptional cases excluded in the pre-
vious discussion. We start with s3p+2tl∂x and suppose that p > 1 but
the exponent l might be arbitrary (e.g. l < 3)

s3p+2tl∂x = (s5 + st4 − st4)s3(p−1)tl∂x = zxp−1yl∂x − s3(p−1)+1tl+4∂x

The last term vanishes as p > 1 and l + 4 > 2. So we have

s3p+2tl∂x = zxp−1yl∂x = −∂z
(
− 1

2z
2xp−1yl

)
∂x ∼=

p− 1
2

z2xp−2yl∂z

= p−1
2

(
s10 + 2s6t4 + s2t8

)
s3p−6tl∂z

= p−1
2

(
s3(p+1)+1tl + s3(p−2)+2tl+8

)
∂z

As we had p > 2, the last term vanishes by what we already calculated,
so

s3p+2tl∂x = p−1
2

(
s3(p+1)+1tl

)
∂z = p−1

10

(
5s4 + t4 − t4

)
s3ptl∂z

∼= 3(p−1)
10 s3p+2tl∂x − p−1

10 t
4s3ptl∂z

The last term is zero as usual, so we have 3(p−1)
10 = 1 which is impossible.

Lemma 4.19. s3p+2tl∂x is trivial for p > 2.

We continue with s2tl∂z and suppose that l > 6:

s2tl∂z = 1
4st

l−3∂y =
(
s5 + st4 − s5

)
1
4 t
l−7∂y = 1

4zy
l−7∂y + s6t4∂z

= −∂w
(
− 1

4wzy
l−7
)
∂y ∼= − 1

4wy
l−7∂x = − 3

4s
4yl−4∂x

∼= − 1
4

(
5s4 + t4

)
s2yl−4∂z = − 1

4s
2yl∂z

This means

Lemma 4.20. The deformation s2tl∂z is trivial for l > 6.
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As we go on, we find that for p > 3 by lemma 4.19:

s3p+1tl∂z = (5s4 + t4 − t4)
1
5
s3(p−1)tl∂z ∼=

3
5
s3(p−1)+2tl∂x = 0

Lemma 4.21. The deformation s3p+1tl∂z is trivial for p > 3.

Furthermore

s3p+1tl∂x =
1
3
(
5s4 + t4

)
s3(p−1)+2tl∂z =

5
3
s3(p−1)+2tl+4∂z = 0

for p− 1 > 0 by lemma 4.18.

Lemma 4.22. The deformation s3p+1tl∂x is trivial for p > 1.

And finally

stl∂x =
(
s5 + st4 − s5

)
tl−4∂x = zyl−4∂x − s5tl−4∂x

The second term vanishes for l > 6 (lemma 4.17) so

stl∂x = zyl−4∂x = −∂z
(
−1

2
z2yl−4

)
∂x ∼= 0

So

Lemma 4.23. stl∂x is trivial for l > 6.

We summarize the results in the following table.

s3ptl∂x = 0 ; ∀p, l lemma 4.14 s3ptl∂z = 0 ; ∀p, l lemma 4.14

s3p+1tl∂x = 0 ; l > 2, p > 2 lemma 4.15 s3p+1tl∂z = 0 ; l > 2 lemma 4.16

s3p+2tl∂x = 0 ; l > 2 lemma 4.17 s3p+2tl∂z = 0 ; p > 0 lemma 4.18

s3p+2tl∂x = 0 ; p > 2 lemma 4.19 s2tl∂z = 0 ; l > 6 lemma 4.20

s3p+1tl∂x = 0 ; p > 1 lemma 4.22 s3p+1tl∂z = 0 ; p > 3 lemma 4.21

stl∂x = 0 ; l > 6 lemma 4.23

This proves the finite-dimensionality of T 1
IsoDef (ϕ5). But we need to

know the exact dimension. Therefore we have to look at linear relations
between the remaining monomials. These are
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1. s∂x st∂x st2∂x st3∂x st4∂x st5∂x st6∂x

2. s2∂x s2t∂x s2t2∂x

3. s4∂x s4t∂x s4t2∂x

4. s5∂x s5t∂x s5t2∂x

5. s∂z st∂z st2∂z

6. s2∂z s2t∂z s2t2∂z s2t3∂z s2t4∂z s2t5∂z s2t6∂z

7. s4∂z s4t∂z s4t2∂z

8. s7∂z s7t∂z s7t2∂z

Let us consider s2tl∂x for l < 3. We have

s2tl∂x ∼=
5
3
s4tl∂z

so the second and the seventh line are linear dependent. Furthermore

s7tl∂z =
(
5s4 + t4 − t4

)
s3tl∂z ∼=

3
5
s5tl∂x

It follows that the last line is a multiple of the fourth one. We can thus
reduce the table as follows:

1. s∂x st∂x st2∂x st3∂x st4∂x st5∂x st6∂x

2. s2∂x s2t∂x s2t2∂x

3. s4∂x s4t∂x s4t2∂x

4. s5∂x s5t∂x s5t2∂x

5. s∂z st∂z st2∂z

6. s2∂z s2t∂z s2t2∂z s2t3∂z s2t4∂z s2t5∂z s2t6∂z

Moreover, we see that for t > 4

stl∂x =
(
s5 + st4 − s5

)
tl−4∂x = zyl−4∂x − s5tl−4∂x ∼= −s5tl−4∂x



132 Isotropic Mappings

so the three entries of the fourth line are multiples of the last three of
the first row. In the same manner,

s4tl∂x =
1
3
(
5s4 + t4

)
s2tl∂z =

1
3
s2tl+4∂z

proving that the third row is a multiple of the last entries of the sixth
row. So we can once again reduce the table to

1. s∂x st∂x st2∂x st3∂x st4∂x st5∂x st6∂x

2. s2∂x s2t∂x s2t2∂x

5. s∂z st∂z st2∂z

6. s2∂z s2t∂z s2t2∂z s2t3∂z s2t4∂z s2t5∂z s2t6∂z

Now it is more or less obvious (and can be indeed verified) that
the remaining elements are linearly independent over K and therefore
constitute non-trivial deformations. So we get the final result

dimK

(
T 1
IsoDef (ϕ5)

)
= 20

Summarizing the above results, we obtain

map l

(
ϕ∗OK2,0

OL,0

)
t1Def (ϕ) t1IsoDef (ϕ) l

(
ΩK2,0/K4,0

)
ϕ1 3 5 1 2

ϕ2 10 19 6 4

ϕ3 21 55 15 6

ϕ4 36 97 28 8

ϕ5 28 77 20 8

This leads to the following conjecture

Conjecture 4.24. For isotropic mappings from (K2, 0) to (K4, 0) of
corank one, the following relation holds true

δ = dimK

(
T 1
IsoDef (ϕ)

)
+ dimK

(
ΩK2/K4

)
whenever all of these three dimension are finite.
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If the image of ϕ is the open Whitney umbrella in K4, this relation is
satisfied:

(
T 1
IsoDef (ϕ)

)
= 0 in this case as we have proved (theorem 4.4)

and one shows directly that dimK

(
ΩK2/K4

)
= δ = 1. Hence one may try

to prove the conjecture by a “conservation of number”-argument using
corollary 4.12 (see [dJP00] for a description of this principle), that is,
one has to show that the modules ϕ∗OK2×S,0/OLS,0, T 1

IsoDef (ϕS) and
ΩK2×S,0/K4×S,0, where S is a parameter space and ϕS : K2 ×S → LS ⊂
K4 × S a deformation of the given map ϕ, are free (Cohen-Macaulay is
sufficient if S is smooth) OS-modules. This is however not clear at all,
therefore, the above statement remains a conjecture.





Appendix A

Deformation Theory

The aim of this large appendix is to give a review of abstract deforma-
tion theory as developed by Schlessinger, Artin, Deligne, Millson and
others. All facts presented herein are “well-known”, but the appropriate
references are rather scattered in the literature. Therefore, we tried to
put them together here in one place. There are three central notions
which we will explain: categories fibred in groupoids, deformation func-
tors and controlling differential graded Lie algebras (dg-Lie algebras for
short). The first two are (non-equivalent) ways to formalize a given de-
formation problem. On the other hand, to any dg-Lie algebra (L, d, [ , ])
one can associate either a category fibred in groupoids over the category
of Artin rings (called DefL) or a functor on the category of Artin rings
(called Def L). For a given deformation problem, one tries to construct
an appropriate dg-Lie algebra and to prove the equivalence of the given
fibred category with DefL (resp. the isomorphy of the given deforma-
tion functor with Def L). This approach encompasses the more classical
notions of the tangent space and of an obstruction theory for a func-
tor. However, it might be very hard to find the right dg-Lie algebra
and to prove the above equivalence. We describe some basic examples,
namely, deformations of complex manifolds, associative algebras and Lie
algebras, and, in more detail, a local version of the cotangent complex.
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A.1 Formal deformation theory
In this first part we work in a completely abstract setting. We first
introduce differential graded Lie algebras and then turn our attention
to deformation functors and fibred categories. Finally, we explain the
meaning of a “controlling” dg-Lie algebra. We work over an arbitrary
field of characteristic zero, denoted by k.

A.1.1 Differential graded Lie algebras
Here the basic definitions and properties of dg-Lie algebras are given.
For a more detailed reference, see [Man98].

Definition A.1. A dg-Lie algebra L = ⊕i∈ZLi is a Z-graded vector
space together with a differential, that is, a linear map d : Li → Li+1

satisfying d2 = 0 and a linear bracket

[ , ] : Li × Lj −→ Li+j

such that

• [a, b] + (−1)ij [b, a] = 0 for all a ∈ Li and b ∈ Lj.

• d[a, b] = [da, b] + (−1)i[a, db] for a ∈ Li and b ∈ Lj.

• [a, [b, c]] = [[a, b], c] + (−1)ij [b, [a, c]]

We remark that the subspace L0 with the induced bracket is a Lie algebra
in the usual sense.

A morphism between dg-Lie-algebras is a morphism of complexes
which preserves the bracket. A dg-Lie algebra is called formal if it is
isomorphic to its cohomology (viewed as a dg-Lie algebra with trivial
differential and induced bracket).

For further use, we also give the related definition of a differential
graded algebra.

Definition A.2. A differential graded algebra (DGA) is a Z-graded vec-
tor space A = ⊕i∈ZAi together with a differential d : Ai → Ai+1 satisfy-
ing d2 = 0 and a linear product

∧ : Ai ×Aj −→ Ai+j
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such that

• a ∧ b = (−1)ijb ∧ a for all a ∈ Ai, b ∈ Aj.

• a ∧ (b ∧ c) = (a ∧ b) ∧ c for all a, b, c ∈ A.

• d(a ∧ b) = da ∧ b+ (−1)ia ∧ db for all a ∈ Ai, b ∈ A.

Again, a morphism of DGA’s is a morphism of complexes commuting
with the differentials and respecting the products.

Let us return to dg-Lie algebras.

Definition A.3. Let (L, d, [ , ]) be a dg-Lie algebra. The set MCL ⊂ L1

(called the set of solutions of the Maurer-Cartan equation) is by defini-
tion

MCL =
{
a ∈ L1 | da+

1
2
[a, a] = 0

}
It is immediate that MCL is preserved under a morphism of dg-Lie al-
gebras.

In order to relate dg-Lie-algebras to deformation problems, we have
to find a way to encode the action of an automorphism group on a given
set of deformations. Therefore, we will introduce the so-called gauge
action. It is known (see, e.g., [Man01b]), that for any (ordinary) Lie
algebra g, there is a group structure on

ĝ := lim←−(g/gi)

where gi := [g, gi−1] is the descending central series. If g is nilpotent,
we get a product on g = ĝ which is called Campbell-Baker-Hausdorff-
multiplication. The formula which defines it is somewhat complicated to
write down. We note the first terms of the Campbell-Baker-Hausdorff-
product ∗:

a ∗ b = a+ b+
1
2
[a, b] +

1
12

[a, [a, b]] − 1
12

[b, [b, a]] + . . .

For every representation ρ : g → End(V ) there is an induced represen-
tation of groups eρ : (g, ∗) → Aut(V ) satisfying eρ(n) = exp(ρ(n)) =∑∞
i=0

1
i!ρ(n)i.
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Lemma A.4. Let (L, d, [ , ]) be a dg-Lie algebra such that L0 is nilpo-
tent. Consider the adjoint action ρ : L0 → End(L1) where ρ(n)(v) =
[n, v]. Then the (conical) set{

v ∈ L1 | [v, v] = 0
}

is invariant under the exponential action eρ.

Proof. See [Man98].

We want to show that not only the set
{
v ∈ L1 | [v, v] = 0

}
, but even

MCL is invariant under the action eρ. This can be done in an elegant way
as follows: For a given dg-Lie algebra (L, d, [ , ]), consider the following
Z-graded k-vector space:

Ld := ⊕i∈ZLid

where Lid := Li for i �= 1 and L1
d := L1 ⊕ kd. Define a dg-Lie-algebra

structure on Ld by

dd(a+ cd) := d(a)
[a+ c1d, b+ c2d]d := [a, b] + c1d(b) + (−1)ic2d(a)

for a ∈ Li, b ∈ Lj and c, c1, c2 ∈ k. Then we see that the mapping

Φ : L −→ Ld
v 	−→ d+ v

is a morphism of dg-Lie-algebras and that a ∈ L1 is a solution of the
Maurer-Cartan equation iff [Φ(v),Φ(v)]d = 0. We can now apply lemma
A.4 to the dg-Lie-algebra (Ld, dd, [ , ]d). It is obvious that the action
eρ preserves the affine hyperplane

{
v + d | v ∈ L1

}
. But the set MCL is

in bijection with the intersection of this affine hyperplane with the cone{
v ∈ L1 | [v, v] = 0

}
, so we get that the action eρ preserves MCL.

A.1.2 Categories fibred in groupoids and deforma-
tion functors

Fibred categories are a very general setup to discuss any type of de-
formation problems. We do not give the lengthy definition here (see
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[BF96]), but only note that a fibred category is a functor p : F → C
satisfying properties concerning the pullback of an object f ∈ F by a
morphism (A→ p(f)) ∈ Mor (C). It follows that the fibre F (A) is a
category. Given a fibred category, one can associate a canonical functor
from C to Sets which sends A ∈ C to the set of isomorphism classes
of objects in F (A). It is also possible to construct a fibred category
from such a functor, but this category will differ from the original one,
namely, by passing from a fibred category to the associated functor one
loses the information contained in the automorphisms of the fibre cate-
gories. Most of the fibred categories found in deformation theory have
a special property: The fibre categories are groupoids, i.e., there are
only isomorphisms over the identity morphism of an object A ∈ C. In
that case one says that F is a category fibred in groupoids. In principle
it is more appropriate to work with categories fibred in groupoids than
with the associated functors. However, the latter approach is simpler
and sufficient for our purpose. We will therefore restrict ourselves to a
description of the theory of functors associated to deformation problems.
We will make an additional assumption in the sequel: The category C
will be assumed to be the category of Artin rings (or its opposite cat-
egory). In that case one can study deformation problems only in the
formal sense, that is, statements like existence of versal deformations,
triviality of given deformations etc. will always be statements on alge-
bras or modules over formal power series rings. How to obtain conver-
gent solutions is a completely different issue. We will not treat it here,
one might consult [dJP00] for a description of some techniques involving
approximation theorems.

The classical reference for the theory of functors on Artin rings is
[Sch68], where conditions for a functor to have a hull (i.e., a formally
versal deformation) are given. Schlessinger introduced the vector space
T 1
F called tangent space of the functor F and the most important of the

above conditions is that its dimension is finite. More recently, Fantechi
and Manetti described in [FM98] a similar formalism for obstructions,
that is, they associate to a deformation functor a vector space called T 2

F

which contains obstructions to the extension of a given deformation to
a larger space. In the case that the deformation problem is governed
by a dg-Lie algebra (L, d, [ , ]) (we will define what this means), these
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spaces are simply the first and second cohomology of L. The meaning
of the higher cohomology groups is less obvious, but can apparently
be understood using the concept of extended deformation functors (see
[Man99] and [BK98]).

Consider the category Art of local Artin rings with residue field k
and the category Ârt of complete local (noetherian) rings with residue
field k. We call short exact sequences

0 −→M −→ B −→ A −→ 0

in Art small extensions of A by M iff mBM = 0. Small extensions with
one-dimensional kernels, that is, sequences of the form

0 −→ k −→ B −→ A −→ 0

are called principal small extensions.
Let Set be the category of pointed sets with distinguished element ∗.

Then we consider functors from Art to Set such that F (k) = ∗. Such
functors together with natural transformations form a category which is
called Fun in [Man98]. There are special morphisms in Fun.

Definition A.5. Let ν : F → G be a natural transformation of functors
(i.e., a morphism in in Fun). Then we will call ν:

• smooth iff for any surjection A′ → A the canonical map

F (A′) −→ G(A′) ×G(A) F (A)

is surjective. A functor F ∈ Fun is called smooth if the morphism
F → {∗} to the constant functor (the final object in the category
Fun) is smooth.

• unramified, if the induced morphism on tangent spaces

T 1
F := F (k[ε]) −→ T 1

G := G(k[ε])

is injective.

• étale iff it is smooth and unramified (Note that then ν is automat-
ically bijective on tangent spaces, these morphisms are also called
minimally smooth).
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Now we can characterize functors which admit universal or at least
versal deformation spaces.

Definition A.6. A functor F ∈ Fun is called pro-representable iff there
exists R ∈ Ârt such that F is isomorphic to the functor hR : Art → Set
defined by hR(A) := Hom(R,A) via the natural transformation

PBR : hR −→ F
(Φ : R→ S) 	−→ F (Φ)

(PB stands for pull-back). R is called a hull iff the morphism PBR is
only étale.

Note that the tangent space of a functor having a hull R is canonically
identified with the Zariski tangent space

(
mR/m2

R

)∗ of Spec(R).
Schlessinger introduced conditions for a functor to be pro-represen-

table or to have a hull. We list here these properties together with some
modifications which can be found [FM98].

Definition A.7. Let F ∈ Fun and A′ → A and A′′ → A be morphism
in Art, the latter being a small extension. Consider the canonical map

ηA′,A′′,A : F (A′ ×A A′′) −→ F (A) ×F (A) F (A′′)

Then we have the following conditions for the functor F :

(H1) the map ηA′,A′′,A is surjective for all small extensions A′′ → A.

(H2) ηA′,A′′,A is bijective for A = k, A′′ = k[ε]. A functor satisfying
(H1) and (H2) is called deformation functor.

(H2’) ηA′,A′′,A is bijective for A = k and arbitrary A′′. Such a func-
tor is called deformation functor with obstruction theory (see sec-
tion A.1.3 on page 143).

(H3) the tangent space T 1
F of F is finite-dimensional over k. (Note

that H2 guarantees that T 1
F is a vector space.)

(H4) The map ηA′,A′′,A is bijective for every small extension A′′ → A.
A functor satisfying this condition is also called homogeneous.
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We now reproduce the fundamental theorem from [Sch68] which jus-
tifies the above conditions.

Theorem A.8. Let F ∈ Fun be a deformation functor with finite-
dimensional tangent space ((H1), (H2) and (H3) are satisfied). Then
there is a hull R ∈ Ârt. If, in addition, (H4) holds, then R pro-
represents F .

Proof. We follow the proof in [Art76]. A hull in the above sense is a
complete ring R ∈ Ârt, together with elements Xn ∈ F (Rn) where
Rn := R/mn+1

R such that OXn ⊗Rn k = OX0 and OXn ⊗Rn Rn−1 =
OXn−1 for all n (X0 is the unique object in F (k)) and such that for
all Xn the versality condition holds in the subcategory Artn of rings
P ∈ Art with mn+1

P = 0. We proceed by induction on n. For n = 1,
choose a basis of ε1, . . . , ετ of T 1

F and consider S = k[ε1, . . . , ετ ] and
R1 = S/m2

S . Set X1 := k ⊕ T 1
F . Then X1 is versal over R1. Now

suppose that a versal Xn−1 over Rn−1 is constructed. Suppose Rn−1 to
be a quotient of S by an ideal Jn−1. Consider the following set

S :=
{
I ⊂ S | I ⊂ Jn−1; mSJn−1 ⊂ I; ∃XI ∈ F (I);

OXI ⊗S/I Rn−1 = OXn−1

}
This set is closed under intersections: As S/(I1∩I2) = S/I1×S/Jn−1S/I2,
we see by the axiom (H1) that any two deformations over S/I1 and
S/I2 are liftable to a deformation over S/(I1 ∩ I2). Therefore, there is
a minimal element, which we denote by Jn. Define Rn := S/Jn and
Xn := XI (one can take any XI over Rn here that lifts Xn−1). It
remains to check that Xn/Rn is versal which amounts to show that the
transformation

PBRn : hRn −→ F
(Φ : Rn → A) 	−→ Φ∗F (A)

(of functors on Artn) is smooth. Suppose that we are given a surjection
A′ → A in Artn, a morphism XA′ → XA over A′ → A and Φ : Rn → A.
Then we have to find a lift Rn → A′ such that OXA′ = OXn ⊗RnA

′. It is
in fact sufficient to do it only for small extensions A′ → A, and even only
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for principal small extensions. So suppose that ker(A→ A′) is of dimen-
sion one. Denote by R′ the fibre sum ring R′ := Rn×AA′. Then by (H1),
there is a deformation XR′ over R′ restricting to Xn over Rn and to XA′

over A′. By smoothness of S, we can lift the morphism S � Rn to R′.
But the image of S → R′ and of S � Rn coincides, due to the minimality
of Jn. This yields a splitting Rn → R′ of the morphism R′ → Rn and we
can write R′ ∼= Rn×k k[ε]/ε2, where the isomorphism depends on a cho-
sen homomorphism from Hom(Rn, k[ε]/ε2). For each such isomorphism
R′ ∼= Rn×kk[ε]/ε2, we get an induced deformation X̃R′ := OXRn

⊗RnR
′.

On the other hand, Hom(Rn, k[ε]/ε2) = Hom(R1, k[ε]/ε2) = T 1
F , so X̃R′

depends on the choice of an element from T 1
F . Axiom (H2) tells us that

F (R′) ∼= F (Rn) ×F (k) T
1
F . Obviously, X̃R′ and XR′ both projects on

XRn over Rn. Then by taking their difference in T 1
F as the homomor-

phism defining the identification R′ ∼= Rn ×k k[ε]/ε2, we get alter X̃R′

to become isomorphic to XR′ . Then we have XRn ⊗Rn R
′ = X̃R′ = XR′

and XR′ ⊗′R A′ = XA′ , so the composition map Rn → R′ → A′ (the
first one is the splitting from above, the second the projection) is the
required morphism satisfying OXRn

⊗Rn A
′ = OXA′ . The proof of the

second statement will not be given here. It can be found in [Sch68].

A.1.3 Obstruction theory
From the previous section we know that functors F ∈ Fun satisfying
Schlessinger’s conditions admit a hull R. But this does not give any
information on the structure of the space Spec(R). In particular, we do
not know whether it is smooth or not. Obstruction theory is concerned
with this question. More specifically, one asks whether for a given small
extension

0 −→M −→ B −→ A −→ 0

the induced map F (B) → F (A) is surjective. Note that this is nothing
else but the fact that the functor F is smooth in the sense of defini-
tion A.5 on page 140.

The most general treatment of obstruction theory is found in [FM98].
In that paper, obstructions are not defined for a single element F ∈ Fun
but rather for a morphism F → G of deformation functors and conse-
quently called relative obstruction theories. However, in our applications
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this generality will not be needed. Therefore, we will restrict ourselves
to the theory described in [Man98].

Definition A.9. Let F ∈ Fun, then an obstruction theory of F ,
denoted by (V, vF ) consists of the following data:

• a k-vector space V

• a map vF (e) : F (A) → V ⊗kM associated to any small extension

e : 0 −→M −→ B −→ A −→ 0

such that the following properties are satisfied:

1. Let η ∈ F (A) given, such that η lies in the image of the map
F (B) → F (A). Then vF (e)(η) = 0

2. Let α : e1 → e2 be a morphism of small extensions, i.e.:

e1 : 0 �� M1
��

αM

��

B1
��

αB

��

A1
��

αA

��

0

e2 : 0 �� M2
�� B2

�� A2
�� 0

and η ∈ F (A1) then

vF (e2) (F (αA)(η)) = (IdV ⊗ αM ) (vF (e1)(η))

An obstruction theory for which the converse of 1. holds is called com-
plete. Morphisms of obstruction theories are defined in the obvious way:
as a map of vector spaces ϕ : V → V ′ such that v′F (e) = ϕ◦vF (e). Then
an obstruction theory (O, vF ) is called universal iff it is “the smallest
one”, i.e., if there is an unique morphism (OF , vF ) → (V, vF ) for any
other given obstruction theory (V, vF ) of the functor F .

A major result in [FM98] is that a functor F ∈ Fun satisfying the
conditions (H1) and (H2’) (which were called deformation functors with
obstruction theory in the above definition) does indeed have a universal
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obstruction theory which is complete and consists only of obstructions
associated to principal extensions. However, the proof is rather abstract
and does not give much advice how to construct a universal obstruction
theory for a given deformation functor.

As a first application, we give conditions for functors and morphisms
to be smooth.

Theorem A.10. Let ν : F → G be a morphism of functors and (V, vF ),
(W, vG) obstruction theories for F and G, respectively, then we call a
linear map vν : V → W compatible iff for each small extension 0 →
M → B → A→ 0 and each η ∈ F (A) we have (vG◦ν)(η) = (vν⊗IdM )◦
vF (η). Then the following holds: ν is smooth if (V, vF ) is complete, vν
is injective and T 1

F → T 1
G is surjective.

Proof. First we prove the following preliminary fact: For any functor
F ∈ Fun and any small extension as in the theorem, there is a natural
transitive action of T 1

F ⊗M on the fibres of F (B) → F (A). For this one
first needs to identify F (k ⊕M) (k ⊕M being the trivial extension of
M by k) with T 1

F ⊗M which is easily done by induction on the length
of B. Then consider C := B ×A B. We have C ∼= B ×k (k ⊕M) so, by
(H2’)

F (C) = F (B) × (T 1
F ⊗M)

From the natural morphism α : F (C) → F (B) ×F (A) F (B) we obtain a
map

F (B) × (T 1
F ⊗M) −→ F (B) ×F (A) F (B)

which by construction is the identity on the first factor. Composing with
the second projection, we get finally a map F (B)× (T 1

F ⊗M) −→ F (B)
which induces the group action we are looking for. Transitivity follows
immediately from the surjectivity of α which comes from condition (H1).

Let an element (a, b′) ∈ F (A) ×G(A) G(B) be given. Our task is to
find b ∈ F (B) which projects to a ∈ F (A) and b′ ∈ G(B). Denote by
a′ ∈ G(A) the common image of a and b′ in G(A). As b′ is a lift of
a′ to G(B), we have that vG(a′) = 0 ∈ W ⊗M . By compatibility and
injectivity of vν we get vF (a) = 0 in V ⊗M . But (V, vF ) is complete,
so we can find b̃ ∈ F (B) lifting a ∈ F (A). It is not true that the image
b̃′ = ν (̃b) is equal to b′. But as (̃b′, b′) is in G(B) ×G(A) G(B), we find
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t′ ∈ T 1
G ⊗M which sends b̃′ to b′. By surjectivity of T 1

F → T 1
G there is

t ∈ T 1
F ⊗M which can be used to find an element b lying in the same

fibre of F (B) → F (A) as b̃ and having the desired properties.

For any morphism ν : F → G of functors and for any obstruction
theory (W, vG) of G, the composition (W, vG◦ν) is an obstruction theory
for F . By taking W = OG and using the universality of OF we obtain a
linear map OF → OG. Applying the preceding theorem yields:

Corollary A.11. Let ν : F → G be a morphism and consider the
universal obstruction theories OF and OG.

• ν is smooth iff T 1
F → T 1

G is surjective and OF → OG is injective.

• F is smooth iff OF = 0

Proof. It remains to prove that for a smooth morphism ν the map oν :
OF → OG is injective. So suppose that there is an x ∈ OF such that
oν(x) = 0. By universality, there is a small extension B � A and η ∈
F (A) such that vF (η) = x. As OG is complete, we can lift ν(η) ∈ G(A)
to G(B). But then by smoothness of ν there is a lift of η to F (B) which
in turn implies that vF (η) = x vanishes.

The universal obstruction theory of a pro-representable functor can
be explicitly described. First remark that for each small extension e :
0 → M → B → A → 0 and morphisms φ : A′ → A resp. ψ : M → M ′

we have a pullback φ∗e and a pushforward ψ∗e defined as follows: φ∗e
is the extension

0 −→ M −→ A′ ×A B −→ A′ −→ 0

whereas ψ∗e is
0 −→M ′ −→ B′ −→ A −→ 0

with B′ := (B ⊕M ′) / ({m,ψ(m) |m ∈M}).
Theorem A.12. Let R = P/I where P = k[[x1, . . . , xn]] and I ⊂ m2

P .
Then we have the small extension

uR : 0 −→ I/mP I −→ P/mP I −→ R −→ 0

and the universal obstruction space of the functor pro-represented by R
is OhR := (I/mP I)

∗.
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Proof. Define the obstruction map vhR as follows: Let

e : 0 −→ M −→ B −→ A −→ 0

be any small extension and η ∈ hR(A). This induces a morphism η :
P → A. Choose any lift to a morphism η̃ : P → B. Obviously, η̃(I) ⊂M
and η̃ maps mP to mB. Therefore, η(mP I) = 0 ∈ B and we obtain a
map P/mP → B which in turn induces the map

λη : I/mP I −→M

Then define vhR(η) := λη ∈ (I/mP I)∗ ⊗M . We see that λη is zero iff
η(I) = 0 ∈ B. This means that there is a lift of η to B showing that
we have a well-defined obstruction theory. That it is indeed universal is
proved in [FM98].

We note that using the above definitions of pullback and pushfor-
ward, we could have defined λη as the element of (I/mP I)∗ ⊗ M =
Hom(I/mP I,M) such that η∗e = λη∗uR.

We now introduce a concept which will be important in the next
section, where functors canonically associated to any dg-Lie algebra will
be considered. We will call a functorG a group functor if the composition
with the forgetful functor from Groups to Sets is an object of Fun. We
will suppose that G is smooth (meaning that it is smooth viewed as an
object of Fun). Then for a given deformation functor F ∈ Fun we say
that G acts on F iff there is for each A ∈ Art a morphism

G(A) × F (A) −→ F (A)

which is a group action in the usual sense. Moreover, we require these
actions to be compatible with morphisms in Art.

Lemma A.13. Consider the action

∗ : T 1
G × T 1

F −→ T 1
F

and the induced map ν : T 1
G → T 1

F , given by ν(g) = g ∗ 0. Then we have:

1. (g + h) ∗ (a+ b) = (g ∗ a) + (h ∗ b) and t(g ∗ a) = (tg) ∗ (ta) for all
g, h ∈ T 1

G, a, b ∈ T 1
F and t ∈ k.
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2. ν is linear.

3. g ∗ v = ν(g) + v.

Proof. The first point is clear from the definition since the structure of a
vector space of T 1 is defined using morphisms in Art. Then by setting
a = b = 0 in the formulas in 1. we get that ν is linear and by setting
h = 0 and a = 0 we obtain the formula in 3.

In this situation, one can consider the quotient functor D := F/G
which associates to A ∈ Art the set of orbits of F (A) under the action
of G(A). Then we have an obvious morphism F → D in Fun.

Theorem A.14. D is a deformation functor and the projection F → D
is smooth. We have T 1

D = coker
(
ν : T 1

G → T 1
F

)
. The group action of G

on any obstruction theory (V, vF ) is trivial. In particular, there is an
isomorphism OF → OD.

Proof. The first two parts follow immediately from the definitions. Lemma A.13 on
the preceding page describes the action of G on F on the infinitesimal
level and yields T 1

D = coker(ν). The statement on obstructions then
follows from theorem A.10 on page 145.

A.1.4 The functors MCL, GL and Def L

We are now in the position to describe the precise relation between dg-
Lie algebras and deformation functors.

Definition A.15. Let (L, d, [ , ]) be a dg-Lie algebra. Then we define

• The gauge functor GL : Art → Groups, defined as:

GL(A) := exp(L0 ⊗ mA)

• The Maurer-Cartan functor MCL : Art → Sets:

MCL(A) := MCL(L⊗ mA) =
{
x ∈ L1 ⊗ mA | dx+

1
2
[x, x] = 0

}
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• The deformation functor Def L which is by definition the quotient
of MCL by GL. Remember that the action of GL on MCL was
defined in section A.1.1 using the fact that L0 ⊗ mA is nilpotent.

Lemma A.16. Tangent and obstruction spaces of the above functors
are as follows.

1. GL is smooth with tangent space T 1
GL

= L0 ⊗ kε.

2. T 1
MCL

= Z1(L) ⊗ kε where we use the notations Zi(L) = ker(d :
Li → Li+1) and Bi(L) = Im(d : Li−1 → Li).

3. A complete obstruction theory for MCL is given by
(
H2(L), vMCL

)
,

where vMCL will be defined in the proof.

4. The primary obstruction map of the functor MCL, i.e., the
obstruction map associated to the small extension

0 −→ kε −→ k[ε]/(ε3) −→ k[ε]/(ε2) −→ 0

is given by Z1 → H2, x 	→ 1
2 [x, x].

5. T 1
DefL

= H1(L). As for MCL, H2 is a complete obstruction space
with primary obstruction map H1 → H2, x 	→ 1

2 [x, x].

Proof. 1. The smoothness of GL is obvious, as we have a surjective
group homomorphism exp(L0 ⊗ mB) � exp(L0 ⊗ mA) for any
small extension B � A . The tangent space of GL (as a vector
space) is by definition L0 ⊗ mk[ε]/(ε2) = L0 ⊗ kε.

2. Recall that the Lie bracket on a tensor product of a (graded) Lie
algebra with an associative algebra is defined as the Lie bracket on
the terms coming from the Lie algebra times the ordinary product
on the other terms. This implies that for an element x of L⊗kε, the
bracket [x, x] is automatically zero. Therefore, MCL(k[ε]/(ε2)) =
Z1(L) ⊗ kε.

3. We first have to define the obstruction map vMCL . Consider a
small extension in Art:

0 −→M −→ B −→ A −→ 0
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Let x ∈MCL(A) be given. Then choose a lift x̃ ∈ L1⊗mB. Define
h := dx̃ + 1

2 [x̃, x̃]. As x̃ projects to x ∈ A and dx + 1
2 [x, x] = 0 in

A we see that h ∈ L2 ⊗M . Then

dh = ddx̃+ [dx̃, x̃] =
[
h− 1

2
[x̃, x̃], x̃

]
= [h, x̃] − 1

2
[[x̃, x̃], x̃]

By the graded Jacobi identity, [[x̃, x̃], x̃] = 0. But the first term
also vanishes, because

[
L2 ⊗M,L1 ⊗ mB

]
= 0 (remember that

mBM = 0). So h ∈ Z2(L) ⊗M and we define vMCL(x) to be the
class of h in H2(L)⊗M . It is clear from the construction that the
obstruction class vMCL(x) is independent of the choice of the lifting
x̃. Indeed, any other lift is given by x̃+ z with z ∈ L1 ⊗M . Then
h = dx̃+ 1

2 [x̃, x̃]+dz as [z, z] = [z, x̃] = 0 (becauseM ·M ⊂ mAM =
0 ∈ B). So the class of h in H2(L) ⊗M is well-defined. Now we
have to show that (H2, vMCL) is a complete obstruction theory.
One part is easy: Given x ∈ MCL(A) which lifts to y ∈ MCL(B)
then vMCL(x) = 0, just take x̃ = y. Conversely, suppose that
vMCL(x) = 0. Then there is z ∈ L1 ⊗M with dx̃ + 1

2 [x̃, x̃] = dz.
Set y := x̃− z. By the same argument as above we get that y is in
MCL(B) thus defining a lift of x.

4. Let an x be an element in T 1
MCL

= Z1(L) ⊗ mk[ε]/(ε2), then the
lift x̃ ∈ L1 ⊗ mk[ε]/(ε3) can be chosen to lie in Z1(L) ⊗ mk[ε]/(ε3).
Therefore, the obstruction is simply 1

2 [x̃, x̃] = 1
2 [x, x] ∈ H2(L) ⊗

kε2.

5. The action of T 1
GL

on T 1
MCL

is easy to describe: Let x ∈ Z1(L)⊗kε
and a ∈ L1 ⊗ kε be given, then, by definition, the action of a is
given as an action ead(a) on L1

d ⊗ kε preserving the hyperplane
{d+ x |x ∈ L1 ⊗ kε}, namely

ead(a)(d+ x) =
(
(d+ x) + [a, d+ x]d + 1

2 [a, [a, d+ x]d]d + . . .
)

= (d+ x+ [a, d+ x]d) = (d+ x+ dad)

So the action T 1
GL

→ End(T 1
MCL

) is simply

a 	−→ (x 	→ x+ da)
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So we see that T 1
DefL

= H1(L). It follows from theorem A.14 on
page 148 that (H2(L), vDefL

) with vDefL
(x) := vMCL(x′) where

x′ is a lift of x ∈ Def L(A) to MCL(A) is a complete obstruction
theory. From the last point we see that the primary obstruction
map is

H1(L) −→ H2(L)
x 	−→ 1

2 [x, x]

Suppose now that we are give a morphism φ : L → K of dg-Lie
algebras (we would like to stress the fact that this is a morphism of com-
plexes which is compatible with the brackets). Obviously, this induces
morphisms of functors φG : GL → GK and φMC : MCL → MCK which
are compatible in the sense that the diagram

GL ×MCL ��

φG×φMC

��

MCL

φMC

��
GK ×MCK �� MCK

commutes. So we have a morphism of deformation functors Def L →
Def K .

Theorem A.17. If φ : H1(L) → H1(K) is bijective and φ : H2(L) →
H2(K) is injective, then Def L → Def K is étale. If moreover φ :
H0(L) → H0(K) is surjective, then Def L → Def K is an isomorphism.

Proof. The first statement follows directly from the smoothness criterion
above (theorem A.10 on page 145). The second one is a bit more involved
and requires a careful analysis of the action of GL on MCL. A proof can
be found in [Man98].

Now we obtain the following fundamental result as an easy conse-
quence.

Corollary A.18. Suppose that φ : L → K is a quasi-isomorphism.
Then Def L and Def K are isomorphic.



152 Deformation Theory

A.1.5 The T 1-lifting property

The ideas that we will present in this section are essentially due to Z.
Ran, see e.g. [Ran92]. However, we will rather follow the paper [Gro97]
(Note that a more general version of what follows is proven in [FM99]).
The T 1-lifting property is a criterion which ensures the smoothness of
a functor by studying relative versions of its tangent space. Originally,
this was used to prove that the moduli space of deformations of a Calabi-
Yau manifold (the functor of deformations of its complex structure) is
smooth. We reproduce this argument in section A.2.1 on page 156 to
illustrate the T 1-lifting criterion.

We first consider the general situation of definition A.7 on page 141
and introduce an additional condition for a functor in Fun.

Definition A.19. Let F ∈ Fun be a deformation functor. Then we say
that condition (H5) holds iff for each pair of surjections A′ → A and
A′′ → A we have a map

τA′,A′′,A : F (A′) ×F (A) F (A′′) −→ F (A′ ×A A′′)

such that ηA′,A′′,A ◦ τA′,A′′,A is the identity on F (A′) ×F (A) F (A′′) and
such that the following holds: Consider a commutative diagram

B ��

��

A′′

��
A′ �� A

This induces morphisms ϕ1 : F (B) → F (A′ ×A A′′) and ϕ2 : F (B) →
F (A′) ×F (A) F (A′′). Then we require that ϕ1 = τA′,A′′,A ◦ ϕ2.

This condition is in some sense a relative version of the above condi-
tion (H2). More precisely, let us use the following abbreviations

An := k[ε]/(εn+1)
Bn := k[x, y]/(xn+1, y2)
Cn := k[x, y]/(xn+1, y2, xny)
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let αn : An+1 → An , βn : Bn → An, ξn : Bn → Bn−1 and γn : Bn → Cn
the natural morphisms, set

πn : An+1 −→ Bn
ε 	−→ x+ y

π′n : An −→ Cn
ε 	−→ x+ y

and define

T 1
Xn/An

:= {Yn ∈ F (Bn) |F (βn)(Yn) = Xn}

Then (H5) can be used to show that T 1
Xn/An

is an An-module: A pair
α, β of elements from T 1

Xn/An
lies naturally in F (Bn) ×F (An) F (Bn).

Therefore it is mapped to F (Bn×AnBn) by τBn,Bn,An and then to F (Bn)
by the underlying map Bn ×An Bn → Bn. With all these notations, we
can state the main theorem on the T 1-lifting criterion.

Theorem A.20. Let F ∈ Fun be a deformation functor with a complete
obstruction theory (V, vF ) and which satisfies condition (H5). Pick an
element Xn ∈ F (An). Let Xn−1 := F (αn−1)(Xn) be the restriction. Put

Yn−1 := F (πn−1)(Xn) ∈ T 1
Xn−1/An−1

⊂ F (Bn−1)

Then there is Xn+1 ∈ F (An+1) lifting Xn iff Yn−1 lies in the image of
the canonical restriction mapping T 1

Xn/An
→ T 1

Xn−1/An−1
.

Proof. As βn ◦ πn = αn, we have F (βn)(Yn−1) = Xn−1, so Yn−1 is
indeed an element of T 1

Xn−1/An−1
. Consider the following morphism of

small extensions

e1 : 0 �� k
·εn+1

��

µ

��

An+1
αn ��

πn

��

An ��

π′
n

��

0

e2 : 0 �� k
·xny �� Bn

γn �� Cn �� 0
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where µ is the multiplication by n + 1. From this we get the following
diagram by applying the functor F :

F (An+1)
F (αn) ��

F (πn)

��

F (An)

F (π′
n)

��
F (Bn)

F (γn) �� F (Cn)

The functor is supposed to satisfy (H5), therefore we can factor both
F (γn) and F (π′n) through Pn−1 := F (Bn−1) ×F (An−1) F (An) by a mor-
phism τ := τBn−1,An,An−1 such that the following diagram commutes

F (An+1)
F (αn) ��

F (πn)

��

F (An)

F (π′
n)

��
F (πn−1)×idF (An)





F (Bn)

F (ξn)×F (βn)
��

F (γn)
�� F (Cn)

Pn−1

τ

������������

Now consider F (π′n)(Xn) ∈ F (Cn). We see that F (π′n)(Xn) is in the
image of F (γn) iff

τ
(
F (πn−1) × idF (An)

)
(Xn) = τ(Yn, Xn)

is in the image of F (γn) iff (Yn, Xn) is in the image of F (ξn)×F (βn) iff
Yn is in the image of

F (ξn)|T 1
Xn/An

: T 1
Xn/An

−→ T 1
Xn−1/An−1

⊂ F (Bn−1)

On the other hand, the morphism of small obstructions is compatible
with the obstruction theories. So F (π′n)(Xn) can be lifted to F (Bn) iff

vF (e2)(F (π′n)(Xn)) = 0
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which by compatibility is equivalent to (IdV ⊗µ) (vF (e1)(Xn)) (Xn) = 0.
IdV ⊗ µ is an isomorphism because char(k) = 0, so we obtain that this
is the same as the vanishing of vF (e1)(Xn) which in turn is equivalent
to the existence of a lift Xn+1 ∈ F (An+1).

To use the T 1-lifting criterion, we need to check the following simple
fact.

Lemma A.21. Let F be a functor such that the natural restriction map
F (An+1) → F (An) is surjective. Then F is smooth.

Proof. In [FM98] there is a general proof using the factorization theo-
rem (theorem 6.2 and corollary 6.4). However, for functors with finite-
dimensional tangent spaces the situation is of course much simpler.
Therefore, suppose that F has a hull X . Let OX = k[[x1, . . . , xm]]/I. If
X is not smooth, then there is an infinitesimal curve OX → An which can
not be extended to a curve OX → An+1. This violates the surjectivity
of F (An+1) → F (An).

For our purpose, we need to know that the converse of the T 1-lifting
theorem is true.

Lemma A.22. Let F ∈ Fun be smooth. Then the T 1-lifting property
holds for F .

Proof. Let Xn ∈ F (An) be given. Then the element F (πn−1)(Xn) ∈
T 1
Xn−1/An−1

extends to T 1
Xn/An

because F (π′n−1)(Xn) ∈ F (Cn) extends
over Bn (F is smooth) and this extension obviously lies in T 1

Xn/An
.

A.2 Examples of controlling dg-Lie algebras

This part gives concrete examples which are applications of the general
principle that “a deformation problem is governed by a dg-Lie algebra”.
All of these examples are of interest in their own right, but some of
them (deformation of Lie algebras, the cotangent complex) are directly
related to deformations of lagrangian singularities which are discussed
in the second chapter. As an additional reference, we have used [Ste03].
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A.2.1 The Kodaira-Spencer algebra
The Kodaira-Spencer algebra is the most classical example of a dg-Lie
algebra controlling a deformation problem. Consider a complex mani-
fold M , that is, a C∞- manifold together with an integrable complex
structure

J : TM −→ TM

The functor of deformations of M , that is, smooth families MS → S
of complex manifolds Ms with M0 = M reduces by the Ehresmann
lemma to the functor of deformations of the complex structure. Now
consider the dg-Lie algebra (L, d, [ , ]) with:

Li := Γ(M,A0,i
M ⊗ ΘM )

where A0,i
M is the sheaf of C∞-sections of the bundle of anti-holomorphic

exterior forms of degree i. The differential d is induced from the Dol-
beault differential ∂ on antiholomorphic forms whereas the bracket comes
from the Lie bracket on vector fields and from the exterior product on
forms, explicitly:

[ΦdzI ,ΨdzJ ] := [Φ,Ψ]dzI ∧ dzJ

Denote by Def X the functor of deformations of the complex struc-
ture. Then we have the following statement:

Theorem A.23. The functors Def X and Def L are equivalent.

Proof. We will associate to an element of MCL(A) a deformation of the
complex structure over Spec(A). By definition, if γ ∈ MCL(A) then it
is of the form

γ ∈ Γ(X,A0,1 ⊗ ΘM ) ⊗ mA = HomC∞
M

(ΘM ,ΘM ) ⊗ mA

(where ΘM is the antiholomorphic tangent bundle). The graph of such
a γ defines a deformed almost complex structure and it can be checked
that this structure is integrable precisely iff dγ + 1

2 [γ, γ] = 0. On the
other hand, the Lie algebra of the automorphism group of X is known
to be the space of global holomorphic vector fields, which implies that
GL(A) = exp(L0 ⊗ mA) as required.
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Corollary A.24. The space of infinitesimal deformations of the complex
structure is H1(X,ΘX) whereas T 2

DefX
= H2(X,ΘX).

As an application, we prove that deformations of Calabi-Yau mani-
folds are unobstructed.

Corollary A.25. Let X be a three dimensional Calabi-Yau manifold,
that is, a compact Kähler manifold with c1(X) = 0. Suppose moreover
that H1(X,OX) = 0. Then the functor Def (X) is smooth.

Proof. We follow [Nam94]. The vanishing of the first chern class is equiv-
alent to the fact that the canonical bundle ωX is trivial. By Serre duality,
we then have

H1(X,ΘX) ∼= HomC(H2(X,Ω1
X),C)

The last lemma shows that this space equals T 1
Def(X). We want to apply

the T 1-lifting criterion, that is, we are going to show that for a given
family Xn → An, the restriction morphism

HomAn

(
H2(Xn,ΩXn/An

), An
)
−→

HomAn−1

(
H2(Xn−1,ΩXn−1/An−1), An−1

)
is surjective. We will prove this in a number of steps. In fact, it
will be sufficient to show that H2(Ω1

Xn/An
) is free over An and that

H2(Ω1
Xn/An

) → H2(Ω1
Xn−1/An−1

) is surjective for all n > 0. Then re-
quired surjectivity on the “Hom”-spaces follows by applying the functor
HomAn

(
H2(Ω1

Xn/An
),−
)

(which is exact due the freeness of the module
H2(Ω1

Xn/An
)) to the exact sequence

0 −→ C
·εn−→ An −→ An−1 −→ 0

Let us first prove that H2(Ω1
Xn/An

) is free over An. It suffices to show
that the morphism H2(Ω1

Xn/An
) → H2(Ω1

Xn+1/An+1
), given by multipli-

cation by ε, is injective. The cohomology sequence of the short exact
sequence of complexes

0 −→ Ω•Xn/An

·ε−→ Ω•Xn+1/An+1
−→ Ω•X −→ 0
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(this sequence is exact due to the smoothness of X) shows that it is
sufficient to show the surjectivity of H1(Ω1

Xn+1/An+1
) → H1(Ω1

X). In
order to do that, one considers the map

dlog : H1(O∗X) −→ H1(Ω1
X)

of logarithmic differentiation. By Serre duality, H1(OX) = 0 implies
that H2(OX) = 0, hence the map H1(O∗X) → H2(X,Z) is surjective.
But again, H1,0 = H0,1 = 0 so H1(O∗X) ⊗ C → H1,1 is also surjective.
This implies that the image of dlog generates H1(Ω1

X) as a C-vector
space. Now consider the diagram

H1(O∗Xn+1
) ��

dlog

��

H1(O∗X)

dlog

��
H1(Ω1

Xn+1/An+1
) �� H1(Ω1

X)

Take any class in H1(Ω1
X). We can write it as a C-linear combination of

elements in the image of dlog . Take the inverse image of these generators
in H1(O∗X). If the map H1(O∗Xn+1

) → H1(O∗X) is surjective, then we
can find a preimage of the given class in H1(Ω1

Xn+1/An+1
). But surjec-

tivity of H1(O∗Xn+1
) → H1(O∗X) is clear: we are again left to show that

multiplication by ε is injective as a map H2(O∗Xn
) → H2(O∗Xn+1

). But
from H2(OX) = 0 we get that H2(O∗Xk

) injects in in H3(Xk,ZXk
) (for

any k) which is topological, i.e., the multiplication by ε is an injective
map H3(Xn,ZXn) → H3(Xn+1,ZXn+1).

It remains to show the surjectivity of

H2(Ω1
Xn/An

) → H2(Ω1
Xn−1/An−1

)

This is much easier. In fact, as before we get from the long exact co-
homology sequence that it is sufficient to prove H3(Ω1

X) = 0. By using
duality once again we have H3(Ω1

X) = Hom(Ω1
X ,OX)′ = H0(X,ΘX)′

where ′ stands for the vector space dual. Interior derivation of the canon-
ical three form gives an isomorphism ΘX = Ω2 so that

H3(Ω1
X) = H0(X,ΘX)′ = H0(X,Ω2

X) = H2(X,OX)
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But H2(X,OX) = 0 as we have already remarked.

We make another remark on deformations of Calabi-Yau manifolds:
There is a construction of a dg-Lie algebra (due to Kontsevich and Baran-
nikov, see [BK98]), canonically associated to any Calabi-Yau which in-
cludes the Kodaira-Spencer dg-Lie algebra. Its definition is rather sim-
ple, one considers the exterior algebra of the tangent sheaf and the defines
the graded space

Li := Γ(M,A0,p−i+1
M ⊗

p∧
ΘM )

together with the Dolbeault differential ∂ as above. The bracket is in-
duced from the the product on forms and from the so-called Schouten-
Nijenhuis-bracket on polyvector fields. One can show that the versal
deformation space (in the formal sense) is the total cohomology space

H := ⊕ni=1H
i(X,C)

of the manifold X . This dg-Lie algebra parameterizes therefore a more
general object attached to X than just its complex structure. Appar-
ently, this object is the derived category of coherent sheaves onX , viewed
as an A∞-category. Moreover, there is some additional structure on
L, formalized as the so-called dGBV-algebra (differential Gerstenhaber-
Batalin-Vilkovisky algebra) which equips the versal deformation spaceH
with the structure of a (formal) Frobenius manifold. This structure has
become very important to study the mirror symmetry phenomenon, i.e.,
to identify Calabi-Yau manifolds from apparently very different origins.

A.2.2 Deformation of associative, commutative and
Lie algebras

This section deals with deformation of purely algebraic structures: asso-
ciative, commutative and Lie algebras . The corresponding differential
graded Lie algebras are constructed quite similarly. The material in this
section is rather classical, a standard reference is [GS88].

We start with an associative algebra A over a field k. A is seen as a
vector space over k together with a k-bilinear multiplication

µ : A×A −→ A
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such that (associativity condition) µ (a, µ(b, c)) = µ (µ(a, b), c). A defor-
mation is a family (over a base S) of maps µt : A×A −→ A where t is a
parameter from the base. As we want to deal with arbitrary bases (e.g.,
artinien rings), we define more carefully the functor Def A(S) to be an
associative S-algebra structure on A⊗kS modulo isomorphisms. We will
now construct a dg-Lie algebra controlling this deformation problem.

Consider first a slightly more general situation. Let M be an A-
bimodule (where the bimodule structure is given by morphisms α : A×
M →M and β : M ×A→M) and

Cn(A,M) := HomK(A⊗n,M)

be the vector space of k-multilinear maps from A× . . .×A to M . Define
a differential δ : Cn(A,M) → Cn+1(A,M) by

δ(φ)(a0 ⊗ . . .⊗ an) := α (a, φ(a1, . . . , an))

+
∑n
i=1(−1)iφ(a0, . . . , µ(ai−1, ai), . . . , an)

+(−1)n+1β (φ(a0, . . . , an−1), an)

One has to check that δ is indeed a differential. The resulting cohomology
Hk(A,M) of this complex is called the Hochschild -cohomology of the
algebra A with coefficients in M .

Now consider extensions

e : 0 −→M −→ B −→ A −→ 0

of the algebra A by an A-bimodule M such that B is a k-algebra (with
multiplication µe) and the map B → A is a map of k-algebras. Moreover,
we require that the two B-bimodule structures of M (the one given by
the inclusion M ↪→ B and the one given by the algebra map B → A)
coincide. This immediately implies that M is a two-sided ideal in B with
M2 = 0. Two extensions are called equivalent iff there is a commutative
diagram

0 �� M �� B ��

��

A �� 0

0 �� M �� B′ �� A �� 0
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The set of isomorphism classes of such extensions forms a vector space by
the usual Baer sum, where the zero element consists of the semi-direct
product B = A×M with multiplication

µ0 ((a,m), (a′,m′)) = (µ(a, a′), α(a,m′) + β(m, a′))

Lemma A.26. This vector space is isomorphic to H2(A,M). In par-
ticular, extensions of A by itself modulo isomorphisms are classified by
H2(A,A).

Proof. For any extension e, the algebra B is isomorphic to A ×M as
a k-vector space. Then the first component of the multiplication µe is
equal to µ, because B/M is isomorphic to A as an algebra. On the other
hand we know that

µe(a,m′) = α(a,m′)
µe(m, a′) = β(m, a′)

Finally, µe(m,m′) = 0, therefore, the multiplication is given by

µe ((a,m), (a′,m′)) = (µ(a, a′), α(a,m′) + β(m, a′) + λ(a, a′))

for some λ ∈ C2(A,M). The associativity equation for B reads:

µe (µe ((a1,m1), (a2,m2)) , (a3,m3)) =

µe ((a1,m1), µe ((a2,m2), (a3,m3)))

which is equivalent to

α (a1, α(a2,m3)) + α (a1, β(m2, a3)) + α (a1, λ(a2, a3))+
β (m1, µ(a2, a3)) + λ (a1, µ(a2, a3))

=
α (µ(a1, a2),m3) + β (α(a1,m2), a3) + β (λ(a1, a2), a3)+

β (β(m1, a2), a3) + λ (µ(a1, a2), a3)

By definition, we have

α (a1, α(a2,m3)) = α (µ(a1, a2),m3)
α (a1, β(m2, a3)) = β (α(a1,m2), a3)
β (m1, µ(a2, a3)) = β (β(m1, a2), a3)
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Thus associativity is equivalent to

α (a1, λ(a2, a3)) + λ (a1, µ(a2, a3)) = β (β(m1, a2), a3) + λ (µ(a1, a2), a3)

meaning that δλ = 0.
Now consider an extension e which is equivalent to e0 by a commu-

tative diagram as above. The arrow g : B → A ×M (where the latter
algebra corresponds to e0) is necessarily an isomorphism and of the form
g(a,m) = (a,m+ h(a)) for some h ∈ C1(A,M) (this follows imme-
diately from the commutativity). Its inverse is given by g−1(a,m) =
(a,m− h(a)). To say that e and e0 are equivalent is to say that g is an
algebra isomorphism, i.e.:

g (µe ((a,m), (ã, m̃))) = µe0 (g(ã, m̃), g(ã, m̃))

that is:

µe ((a,m), (ã, m̃)) = g−1 (µe0 (g(a,m), g(ã, m̃)))
= g−1 (µe0 ((a,m+ h(a)), (ã, m̃+ h(ã))))
= g−1 (µ(a, ã), α(a, m̃+ h(ã)) + β(m+ h(a), ã))

Therefore we get

α(a, m̃)+β(m, ã)+λ(a, ã) = α(a, m̃+h(ã))+β(m+h(a), ã)−h(µ(a, ã))

and thus
λ(a, ã) = α(a, h(ã)) + β(h(a), ã) − h(µ(a, ã))

Therefore λ = δh. This finishes the proof of the lemma.

It is clear that infinitesimal deformations of the algebra A, that is,
k[ε]/ε2-algebra structures on A[ε]/ε2 are precisely extensions of A by
itself. Therefore, the tangent space of the functor Def A is isomorphic to
H2(A,A). Thus we have to construct the structure of a dg-Lie algebra on
the Hochschild complex C•(A,A). In order to define the Lie bracket, we
first shift (somewhat artificially) the degree of the terms of this complex
by setting C

n
(A,M) := Cn+1(A,M). Then we define the composition

product
C
n
(A,A) × C

m
(A,A) −→ C

n+m
(A,A)

(g, f) 	−→ g ◦ f
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with

(g ◦ f) (a1, . . . , an+m+1) :=

n+1∑
i=1

(−1)m(i−1)g (a1, . . . , ai−1, f(ai, . . . , ai+m), ai+m+1, . . . , an+m+1)

The bracket is just the commutator with respect to this product:

[ , ] : C
p × C

p −→ C
p+q

(g, f) 	−→ g ◦ f − (−1)pqf ◦ g

Theorem A.27. The triple (C
•
(A,A), δ, [ , ]) is a dg-Lie algebra. More-

over the associated functor Def C is isomorphic to Def A.

Proof. To prove the first statement, three things have to be checked: the
anti-commutativity and Jacobi identity of the bracket and the compati-
bility between bracket and differential (all three statements have to been
understand in the graded sense). We first remark that the differential
can be written in terms of the bracket as

δφ = (−1)deg(φ)+1φ ◦ µ− µ ◦ φ = −[µ, φ]

for any φ ∈ C
•
(A,A) (note that we use shifted degrees here). Then the

equality (compatibility of bracket and differential)

δ[φ, ψ] = [δφ, ψ] + (−1)deg(φ)[φ, δψ]

is equivalent to the graded Jacobi identity. To prove it (and the anti-
commutativity), one has to check explicitly rather huge identities for the
product ◦. We refrain from doing this here.

Now consider a ring S ∈ Art. To any element λ ∈ MCC(S) we
associate the “deformed multiplication”

µλ := µ+ λ : (A⊗k S) ⊗S (A⊗k S) → A⊗k S

This obviously defines an algebra structure (over S) on A ⊗k S. We
want to know whether it is associative, this means by definition of the
composition product:

(µλ ◦ µλ) (a, b, c) = µλ(µλ(a, b), c) − µλ(a, µλ(b, c)) = 0
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So the deformed multiplication is associative iff

(µ+ λ) ◦ (µ+ λ) = µ ◦ µ+ µ ◦ λ+ λ ◦ µ+ λ ◦ λ = 0

The original multiplication was associative, therefore µ ◦ µ = 0. More-
over, deg(λ) = 1 so [λ, λ] = 2λ ◦λ. Therefore the associativity condition
for µλ is equivalent to

δλ+
1
2
[λ, λ] = 0

This means that we have a surjective morphism of functors MCC →
Def A. Now it can be verified that whenever a given deformation µλ
over S is altered by an automorphism from exp(C1), then the resulting
deformation can be transformed back by an automorphism of A ⊗ S.
Moreover, all automorphisms of A ⊗ S are of this type, therefore, the
induced morphism of functors Def C → Def A is an isomorphism.

The cases of deformation of commutative and Lie algebras can now
be describe rather briefly. Let A be an associative and commutative
algebra. Then we want to consider commutative deformations, con-
sequently, we look for a dg-Lie algebra which is a subcomplex of the
Hochschild complex. Consider the symmetric group Sn and define for
all 0 < r < n a pure r-shuffle to be a permutation π ∈ Sn such that
π(1) < . . . < π(r) and π(r + 1) < . . . < π(n). Then the r-th shuffle op-
erator is sr :=

∑
pure shuffles sgn(π)π. Now we define the n-th Harrison

cochain module to be

Chn(A,M) := {φ ∈ Cn(A,M) | φ ◦ sr = 0 ∀r}

Theorem A.28. Ch•(A,M) together with the Hochschild differential is
a subcomplex of C•(A,M). Moreover, for M = A, the bracket from the
Hochschild complex restricts to Ch•(A,A), which therefore becomes a sub
dg-Lie algebra of Cn(A,A). The associated functor Def Ch is the functor
of commutative deformations of A.

Proof. This is proved with the same methods as in the associative case.
We only remark that for n = 0 and n = 1 there are no shuffles so
Hochschild and Harrison cohomology coincide. On the other hand, for
n = 2 we have precisely one shuffle, namely a ⊗ b − b ⊗ a, therefore,
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H2(Ch•(A,M)) classifies commutative extensions of A by a symmetric
A-bimodule M . In particular, H2(Ch•(A,A)) are the infinitesimal com-
mutative deformations of A.

Finally, we consider deformations of Lie algebras. We give only the
definition of the corresponding dg-Lie algebra, referring to [GS88] for
details. Let g be a Lie algebra over k and M be an g-module (which
is by definition a module over the universal enveloping algebra U(g)).
Then we define the module

Cn(A,M) := Hom

(
n∧

g,M

)

and a differential δ : Cn(g,M) → Cn+1(g,M) by

(δφ) (g1 ∧ . . . ∧ gn+1) :=∑n+1
i=1 (−1)i [gi, φ (g1 ∧ . . . ∧ ĝi ∧ . . . gn+1)]

+
∑

1≤i<j≤n+1

(−1)i+j−1
φ ([gi, gj] ∧ g1 ∧ . . . ∧ ĝi ∧ . . . ∧ ĝj ∧ . . . ∧ gn+1)

In the case M = g there is a bracket, defined for two elements φ ∈
Cn(g, g) and ψ ∈ Cm(g, g) as

[φ, ψ] = φ ∧ ψ − (−1)(m−1)(n−1)ψ ∧ φ

where

(φ ∧ ψ)(g1, . . . , gn+m−1) =∑
pure shuffles

sgn(π)φ
(
ψ(aπ(1), . . . , aπ(n)), aπ(n+1), . . . , aπ(m+n−1)

)
Theorem A.29. (C

•
(A,A), δ, [ , ]) (reduced degree) is the controlling

dg-Lie algebra of the Lie algebra deformation problem.

A.2.3 The cotangent complex
We will construct a dg-Lie algebra which controls flat deformations of
singularities. Here we consider only germs of complex spaces and their



166 Deformation Theory

deformations. The global case is considerably more involved as one has to
take into account deformations of singularities and of complex structures
simultaneously (see, e.g., [BM97]). Our main reference for this section
is [Man01a]. Consider an analytic algebra A, given as a quotient

A0 −→ A := A0/(f1, . . . , fk)

where A0 := K{x1, . . . , xn}. We first construct a resolvent of A, which
is by definition a free differential graded A0-algebra R, concentrated in
negative degrees, with finitely many generators in each degree, which is
quasi-isomorphic to A. The idea of the construction is rather simple.
We will define a chain

R(0) := A0 ⊂ R(1) ⊂ R(2) ⊂ . . .

of DGA’s of the above type, not necessarily acyclic but where in each
step some of the remaining cohomology has been killed. Then the union

R :=
∞⋃
i=0

R(i)

will be quasi-isomorphic to A.
Define R(0) to be the single degree complexA0 concentrated in degree

zero. Then set

R(1) := K{x1, . . . , xn}[y1, . . . , ys1 ]

with s1 := k and deg(xi) = 0 and deg(yj) = −1. The differential δ is
uniquely determined by

δ(xi) = 0 and δ(yj) = fj

and by requiring that R(1) is a DGA. Now we proceed inductively. Sup-
pose that R(i) is constructed such that Hj(R(i)) = 0 for all j > −i.
Then choose a system h

(i)
1 , . . . , h

(i)
ti of generators of H−i(R(i)) and set

R(i+ 1) := R(i)[ysi+1, . . . , ysi+1 ]

with si+1 := si + ti, deg(yl) = −i − 1 and δ(yl) = h
(i)
l−si

for l ∈ {si +
1, . . . , si+1}.
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Now for any DGA (O, d, •) over K, we consider the set DerK(O,O)
of all derivations of O into itself. More precisely:

DernK(O,O) := {Φ ∈ HomK(O,O) | Φ(Ok) ⊂ On+k, ,Φ(K) = 0,
Φ(a • b) = Φ(a) • b+ (−1)n·deg(a)a • Φ(b)}

DerK(O,O) :=
⊕

n∈ZDer
n
K(O,O)

This definition makes DerK(O,O) into a dg-Lie algebra, where the (gra-
ded) bracket is the commutator of derivations and the differential d is
defined as the commutator with δ. One can show that this construction
is unique up to homotopy equivalence.

Definition A.30. Let A be an analytic algebra as above. Define

(LA, d, [ , ]) := DerK(R,R)

to be the dg-Lie algebra of derivations of the resolvent of A.

The importance of this construction is given by the following theorem.

Theorem A.31. Denote by Def A the functor of flat deformations of the
analytic algebra A. Then we have an isomorphism of functors Def LA

→
Def A.

Proof. First we define a transformation

MCLA −→ Def A

So let B be an Artin ring and take an element η ∈ L1
A ⊗ mB =

Der1K(R,R) ⊗ mB. Then we can consider the “perturbed” differential

δη := δ + η : Ri ⊗B −→ Ri+1 ⊗B

Let us calculate its square: As deg(δη) = 1, we see that [δη, δη] = 2δ2η
and so

2δ2η = [δ+η, δ+η] = δ2+[δ, η]+[η, δ]+[η, η] = 2[δ, η]+[η, η] = 2dη+[η, η]

This implies that δη is a differential iff dη + 1
2 [η, η] = 0, i.e., iff η ∈

MCLA(B). It is well-known in homological algebra that a complex of
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modules flat over B is exact iff its reduction modulo mB is exact. There-
fore, RB := (R⊗B, δ + η) is a resolution of

AB := coker

(
R−1 ⊗B

δη−→ R0 ⊗B

)
As RB ⊗B K = R, we see that AB is a family over B with special fi-
bre isomorphic to A. It remains to show that AB → B is flat. But
TorB1 (AB ,K) = H−1(R) = 0, so we are done by the local flatness crite-
rion. This shows that we have defined a morphism MCLA −→ Def A by
sending η ∈MCLA(B) to the isomorphism class of AB.

As a second step, we now prove that this morphism is surjective. So
let us be given a flat family AB which specializes to the algebra A over K.
We have the morphism R0 ⊗B → R0 → A, and the surjection AB → A.
R0 was a free K-algebra, so this yields a morphism of flat B-algebras
R0 ⊗ B → AB . As its reduction over the special point is surjective, the
morphism is itself surjective. So the situation is as follows

0 �� IB,0 ��

����

R0 ⊗B ��

����

AB ��

����

0

0 �� I0 �� R0
�� A �� 0

where IB,0 is flat over B. Therefore we can extend the differential δ on
R(1) to a differential δB on R(1)⊗B by choosing lifts Fi of the elements
δ(yi) = fi ∈ I0 to IB,0 and setting δB(yi) = Fi. Remark that now we
have H0(R(1) ⊗ B) = 0. Then we proceed inductively: at each step k
flatness over A of the kernel of ∂B at degree k guarantees the existence
of an extension of the given differential on R.

So we obtain a DGA (R ⊗ B, δB, •) which is quasi-isomorphic to
AB and whose restriction over K is the given resolvent of A. But this
also implies that the differential can be written as δB = δ + η with
η ∈ mB. Therefore, we get an η ∈ MCLA(B) which shows that the
above transformation MCLA → Def A is surjective.

Remark that given ξ ⊗ b ∈ GLA(B) = Der0K(R,R) ⊗ mB, we get an
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automorphism

eξ⊗b : R⊗B −→ R⊗B

x⊗ b̃ 	−→
∑∞

i=0
1
i!ξ

i(x) ⊗ bib̃

which induces the identity on R and sends the differential δ + η to δ +
eξ⊗b(η). In particular, we have

eξ⊗b (coker(δ + η : R−1 ⊗B → R0 ⊗B))
= coker

(
δ + eξ⊗b(η) : R−1 ⊗B → R0 ⊗B

)
This means that the morphism MCLA → Def A factors through

MCLA → Def LA
→ Def A and obviously, Def LA

→ Def A is surjec-
tive. The last step is now to show that Def LA

→ Def A is also injective.
So take η, η′ ∈MCLA(B) and consider the two complexes (R⊗B, δ+ η)
and (R⊗B, δ+ η′). We suppose that the induced deformations AB and
A′B are isomorphic. It can be proved that this isomorphism can be lifted
to an automorphism g0 : R0 ⊗B → R0 ⊗B, so that

g0 ((δ + η)(R−1 ⊗B)) ∼= (δ + η′)(R−1 ⊗B)

Moreover, g restricts to the identity over K. This extends to an au-
tomorphism g : R ⊗ B → R ⊗ B, such that g ◦ (δ + η) = δ + η′ and
even δ + g ◦ η = δ + η′ as g(δ) = δ. But every automorphism of R ⊗ B
is the exponential of a nilpotent derivation of degree zero, so there is
l ∈ Der0K(R,R) ⊗ mB with el = g. Then we have el(η) = η′ and this
means that the classes of η and η′ in Def LA

are equal. This finishes the
proof.

Corollary A.32. The spaces of infinitesimal automorphisms, infinites-
imal deformations and obstructions of an analytic algebra A := A0/I
with I = (f1, . . . , fk), denoted by T 0

A, T 1
A and T 2

A, respectively, are as
follows:

1. T 0
A = HomA(Ω1

A, A) =: ΘA/K

2. T 1
A = coker

(
ΘA0/K → HomA0(I, A)

)
3. T 2

A = coker (HomA0(R−1, A) → HomA0(R, A)), where R is the
module of relations of I.
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Moreover, the primary obstruction map can be described as follows: Let
φ ∈ HomA0(I, A) be a first-order deformation. Then define an element
in HomA0(R, A) by sending a relation r1, . . . , rk between the generators
of I to the sum

∑k
i=0 si ·φ(fi). Here s1, . . . , sk is a lifting of the relation

r1, . . . , rk, i.e.,
∑k
i=0(fi + εφ(fi)(ri + εsi) ∈ I (The existence of such a

lifting is guaranteed by the flatness of the given deformation).

Proof. We have to calculate the cohomology of the dg-Lie algebra L.
We use the following modification of L: Let R be the resolvent of the
algebra A constructed above and consider H := DerR0(R,R). This also
has the structure of a dg-Lie algebra and there is an exact sequence of
complexes

0 −→ H −→ L −→ DerK(R0, R) −→ 0

Furthermore, we have

H0(DerK(R0, R)) =
{
α ∈ Der0K(R0, R) | δ ◦ α = α ◦ δ

}
= DerK(R0, A)

and Hi(DerK(R0, R)) = 0 for i �= 0 (because DerK(R0, R) is concen-
trated in degrees ≤ 0, R is exact in degree ≤ 0 and R0 is free). Moreover,
we have Hi(H) = 0 for i ≤ 0 and therefore Hi(L) = Hi(H) for i > 1.
We get an exact sequence

0 −→ H0(L) −→ DerK(R0, A) −→ H1(H) −→ H1(L) −→ 0

Any class α ∈ H0(L) induces in particular an α ∈ DerK(R0, R0) with
α(I) ⊂ I, therefore α ∈ DerK(A,A) = ΘA/K. On the other hand, given
any β ∈ DerK(A,A), we can extend it to a derivation of R because
of the exactness of R in negative degree and get something in H0(L).
Therefore, H0(L) = ΘA/K. Now consider a cocycle representing a class
in H1(H), that is, an η ∈ Der1R0

(R,R) with δη = −ηδ. In particular, η
sends R−1 into R0 and η(δ(R−2)) = δ(η(R−2)) ⊂ δ(R−1). So we get

η : R−1/δ(R−2) −→ R0/δ(R−1)

but by the construction of the resolvent R we have R−1/δ(R−2) = I and
R0/δ(R−1) = A. So we obtain a well defined element in HomR0(I, A).
One sees that η sends I into itself iff it is a coboundary. This means that
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we get a well-defined injective mapH1(H) → HomR0(I, A). Surjectivity
is obvious, because as above, a derivation from R−1 to R0 coming from a
morphism in HomR0(I, A) can be extended to the whole R. The above
exact sequence thus reads

0 −→ ΘA/K −→ ΘR0/K −→ HomA0(I, A) −→ H1(L) −→ 0

This proves the statement on T 1
A. Next we calculate H2(L) = H2(H).

First note that the module R of relations of I is canonically identified
with the image of δ : R−2 → R−1. Then given ϑ ∈ Der2K(R,R) with
δϑ = ϑδ, define an element of HomA0(R, A) by sending r ∈ R to the
class of ϑ(r̂) in A, where r̂ is a preimage of r in R−2. This is well defined:
if the chosen preimage is r̂ is in Im(δ : R−3 → R−2), i.e., r̂ = δ(r′),
then ϑ(r̂) = ϑ(δ(r′)) = 0 ∈ A. Moreover, the defined morphism from
Im(δ : R−2 → R−1) to A extends to R−2 iff ϑ = η ◦ δ + δ ◦ η for
some η ∈ Der1K(R,R), i.e., iff ϑ is a coboundary. Therefore, we have a
morphism

H2(L) −→ coker (HomA0(R−1, A) → HomA0(R, A))

which is easily seen to be an isomorphism. From the general discus-
sion above (see lemma A.16 on page 149) we know that the primary
obstruction map is given by

ob : T 1
A −→ T 2

A

φ 	−→ 1
2 [φ, φ]

Then given any relation r ∈ R (which we see as an element of R−2), we
have to prove that the class of

1
2
[φ, φ](r) = (φ ◦ φ) (r)

in A coincides with
∑k

i=0 si ·φ(fi), where (s1, . . . , sk) is a lifting of the re-
lation r = (r1, . . . , rk). This is clear: Consider the perturbed differential
δφ = δ + εφ, then

δφ(r) =
k∑
i=1

(riyi + εφ(r)) =
k∑
i=1

(ri + εsi) yi
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where yi are the generators of the free R0-module R−1. On the other
hand, we have δφ(yi) = fi+ εφ(fi), so that, (φ ◦ φ) (r) = φ(

∑k
i=1 siyi) =∑k

i=1 siφ(fi). This finishes the proof.



Appendix B

Algebraic analysis

Algebraic analysis, or in other words, the theory of (algebraic or an-
alytic) D-modules is the study of systems of differential equations by
algebraic methods. More precisely, to any system of such equations on
a, say, complex manifold X is associated a sheaf of modules over the
sheaf of non-commutative rings of differential operators on X . Any such
DX -module M possesses a characteristic variety char(M), which is in
some sense a differential analog of the usual support of an OX -module.
Namely, it is an analytic subspace of the cotangent bundle T ∗X with the
crucial property that it is a co-isotropic subvariety with respect to the
usual symplectic structure of T ∗X . The special class of DX -modules for
which it is lagrangian, i.e., dim(char(M)) = dimX is called holonomic
and is of particular importance. We will explain the notions mentioned
here in more detail, in particular characteristic varieties. Good general
references for D-modules are [Pha79], [GM93]. See also the comprehen-
sive monograph [Bjö93]. In this chapter we restrict our attention to the
analytic D-module theory over the complex numbers.

B.1 The characteristic variety

Let X be a complex analytic manifold. Let (U ; (x1, . . . , xn)) ⊂ X be a
coordinate chart. Then there exists the ring of differential operators with
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holomorphic coefficient in U , denoted DX(U) and defined as follows:

DX(U) :=
⋃∞
n=0 DX(U)(n)

DX(U)(n) :=

{
P =

n∑
|I|=0

aI∂I | aI ∈ OX(U)

}
where I = (i1, . . . , in) is a multi-index and ∂I := ∂xi1

. . . ∂xin
. Here ∂xi

is the C-linear endomorphism of OX(U) of differentiation with respect
to xi. Note that DX(U)(0) is naturally equal to OX(U) where a function
on U is acting on OX(U) by multiplication. Then the multiplication law
in the ring DX(U) is given by the usual commutator rules of differential
operators, i.e.:

∂xixj − xj∂xi = ∂ij
∂xi∂xj − ∂xj∂xi = 0

We note the following characterizations of DX(U) and DX(U)(n).

Lemma B.1. Consider the ring EndC(OX(U)) of C-linear endomor-
phisms of OX(U).

• The ring DX(U) is isomorphic to the subring of EndC(OX(U))
generated by OX(U) and the operators ∂xi .

• We have

DX(U)(n) =
{

P ∈ EndC(OX(U)) |

[P,DX(U)(0)] ⊂ DX(U)(n− 1)
}

where [ , ] is the operator commutator.

Note that DX(U) is filtered by the subrings DX(U)(n). The asso-
ciated graded ring can be canonically identified with the commutative
ring C[x1, . . . , xn, ξ1, . . . , ξn].

We now turn to the global situation. On the complex manifold X we
have the ring sheaf OX of holomorphic functions and the sheaf EndC(OX)
of C-linear endomorphisms of OX . Let DX(0) = OX and define recur-
sively

DX(n) := {P ∈ EndC(OX) | [P,DX(U)(0)] ⊂ DX(n− 1)}
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and DX := ∪∞n=0DX(n). Then DX is called the sheaf of holomorphic
differential operators on X . As before DX is filtered by the subsheaves
DX(n) and it can be shown that the associated graded sheaf is isomorphic
to OX [ξ1, . . . , ξn]. This can also be expressed as follows:

Lemma B.2. The graded sheaf gr(DX) associated to the above filtration
is isomorphic to the subsheaf of π∗(OT∗X) which consists of functions
which are polynomial in the fibers of π : T ∗X → X.

We quote another fundamental result. The somewhat technical proof
relies essentially on the corresponding result for the sheaf OX (Oka’s
lemma).

Proposition B.3. DX is a coherent sheaf of rings, that is, for each
open set U ⊂ X and each morphism

ϕ : Dp
X |U −→ Dq

X |U

the sheaf Ker(ϕ) is locally of finite type.

As already said, differential systems on a manifold X can be repre-
sented as a module over DX . Here we explain this correspondence.

Consider any coherent module M over DX . Coherence implies that
for each U ⊂ X there is a presentation:

Dp
X |U

ϕ−→ Dq
X |U −→ M −→ 0

The morphism ϕ corresponds to a matrix (A)i,j with differential opera-
tors as entries. This means that the generators mj of M satisfy:

p∑
j=1

Ai,jmj = 0 ∀i = 1 . . . q

Thus we see that solving the system of differential equations given by
the matrix A is equivalent to associating a function (say holomorphic) to
eachmj , so to giving a DX -linear homomorphism from M to OX (remark
that OX is naturally a DX -module by ordinary differentiation). So a
differential system corresponds to a DX -module M and its holomorphic
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solutions are given by the sheaf HomDX (M,OX). The advantage of this
description is that it is independent of any choice, whereas a differential
system can have several representation (e.g., a single differential equation
of degree n can always be transformed into a system of n first-order
equations).

The next step consists in studying filtrations on DX -modules which
are in some sense compatible with the natural filtration on DX . These
are called “good” and defined as follows.

Definition B.4. Let M be a given coherent DX-module. A good filtra-
tion of M is given by submodules (Mk)k∈N such that

• Mk ⊂ Mk+1 and DX(n)Mk ⊂ Mk+n for all n, k ∈ N

• M =
⋃
k∈N Mk

• each Mk is OX -coherent

• There is N ∈ N such that

DX(n)MN = Mn+N

for all n ∈ N

By the very definition of coherence, any such DX -module admits
locally a good filtration (take the filtration induced by the standard fil-
tration of Dk

X with Dk
X � M). It is not clear under which circumstances

a globally defined good filtration exist. However, it is known that for
holonomic modules there is always a global good filtration.

Now we will define the geometric object which relates D-modules to
lagrangian subvarieties. Consider a coherent DX -module M and a good
filtration (Mk) over some open set U . Then gr(M)|U is a module over
gr(DX)|U , thus, we can define the annihilator of gr(M)|U in gr(DX)|U ,
which is a coherent sheaf of ideals of gr(DX)|U . Now the crucial fact is
that although this annihilator ideal depends on the chosen locally good
filtration, its radical is an invariant of M|U which can therefore be glued
into an ideal of gr(DX). More precisely, the following holds.
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Theorem B.5. There is a sheaf of ideals in gr(DX), which is denoted
by
√
gr(M) such that on each restriction to an open subset U where

M|U has a good filtration we have√
gr(M)|U = rad

(
anngr(DX)|U

(
gr(M)|U

))
As we said in lemma B.2 on page 175, gr(DX) is closely related to

OT∗X . In particular, OT∗X is a flat module over π−1 (gr(DX)) (this is
easily to be seen true at every point of X). Thus we have the inclusion

π−1
(√

(gr(M))
)
⊗π−1(gr(DX )) OT∗X ↪→ OT∗X

The ideal in OT∗X generated in this way defines an analytic subset of
the holomorphic cotangent bundle. This is the characteristic variety
attached to the coherent DX -module M. Usual notations for this space
are char(M) or SS(M) (the latter symbol refers to the name “singular
support”, which is justified from the microlocal viewpoint).

Proposition B.6. The characteristic variety char(M) is a coisotropic
subset of the symplectic manifold T ∗X, i.e., the Poisson bracket of two
elements of the defining ideal

π−1
(√

(gr(M))
)
⊗π−1(gr(DX)) OT∗X

lies still in that ideal.

There are at least two different proofs of this result. One uses mi-
crolocal techniques, the other one, due to Gabber, is a far more general
result on filtered rings and modules over them (see [Gab81] and [Bjö93]).
We remark that Gabber’s proof can be generalized in the context of dif-
ferential operators constructed from Lie algebroids, see section 3.1.1.

B.2 Holonomic DX-modules
As we said in the last section, a characteristic variety is always coisotro-
pic. This implies that dim (char(M)) ≥ n where n is the dimension of
the underlying variety X . Note that this Bernstein inequality is proved
independently of the involutiveness of char(M).
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Definition B.7. Let M be a coherent DX-module. M is called holo-
nomic iff its characteristic variety is of dimension n, i.e., if it is a la-
grangian subvariety of T ∗X.

According to this definition, holonomic DX -modules provide exam-
ples for lagrangian subvarieties. The simplest lagrangian submanifold of
the cotangent bundle is its zero section. It is easy to show that iff the
characteristic variety is just the zero section, then the good filtration is
stationary which in turn implies that the DX -module is OX -coherent.
Then it is even locally free over OX and its DX -module structure is
nothing else than an integrable connection.

In general, the characteristic variety is much more complicated. But
at least we have the following relation with the conormal space construc-
tion.

Lemma B.8. Let M be a holonomic DX-module. Let π : T ∗X → X be
the projection. Denote by CM the union of the components of char(M)
which are different from the zero-section of π. Then we have

CM =
⋃

Z⊂π(CM)

T ∗ZX

where Z runs over the irreducible components of π(CM).

Its well known that flat connections on vector bundles (i.e., locally
free OX -modules) are in one to one bijection with local systems on
X (which in turn are equivalent to representations of the fundamen-
tal group). The so called Riemann-Hilbert-correspondence determines
the class of holonomic DX -modules to which this fact can be general-
ized. The first essential step is Kashiwara’s constructibility theorem.
We include this fundamental result here in order to motivate one of our
central theorems on deformations of lagrangian singularities (see 3.35 on
page 88). We will use some notions from complex analysis concerning
stratifications. See for example [Mer93].

Theorem B.9. Let M be DX coherent and holonomic. Then there is
a Whitney regular stratification of X such that the solution complex of
M

Sol•(M) := RHomDX (M,OX)

is constructible with respect to this stratification.
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Remarks:

• Constructibility of a sheaf means that the restriction of this sheaf
to each stratum is a local system of finite dimensional vector spaces
over C.

• The solution complex Sol•(M) is seen as an object in the derived
category of sheaves of complex vector spaces on X . Therefore,
constructibility of such a complex means constructibility of its co-
homology sheaves.

• We could have considered the sheaf complex

DR•(M) := RHomDX (OX ,M)

instead, which is called the de Rham complex of M. Then con-
structibility holds as well. But this can be deduced more generally
from the duality theorem for holonomic modules.

• In the definition of the solution complex of M (as well as in that
of the de Rham complex) we do not actually use the fact that
M is a single holonomic module, that is, we can state the same
theorem for complexes of holonomic modules (i.e. complexes of
DX -modules such that their cohomologies are holonomic). It fol-
lows from general consideration about derived categories that the
proof of constructibility in this case is almost the same as for single
degree complexes.

We will only give an idea of the proof following [Bjö93] and skip the
technical details. We will use (but not prove) the fact that the spaces
Z ⊂ π(char(M)) provides a Whitney stratification of X . Then first we
show that the restrictions

ExtpDX
(M,OX)|Z

for each p ∈ N and Z ⊂ π(char(X)) form a local system. The second
step consists in proving that the stalk of ExtpDX

(M,OX) at each point is
finite-dimensional. The essential ingredient for both steps is the following
result from functional analysis whose proof can be found in [KV71].
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Proposition B.10. Consider two (bounded) complexes of Fréchet spaces
with continuous linear differentials. Suppose that we are given a mor-
phism of these complexes consisting of compact operators. If, under these
hypotheses, the mapping is a quasi-isomorphism, then the cohomology of
the two complexes are finite-dimensional vector spaces

The second technical result (which is needed to use the preceding
construction) concerns the restriction morphism of a holonomic DX -
module with respect to C1-domains with non-characteristic boundary.

Definition B.11. Let ϕ a real valued function of class C1 and consider
the domain Ω = {x ∈ X |ϕ(x) < 0}. Suppose furthermore that ∂Ω is
compact and that ϕ is regular there. Then we set

N∗Ω = {(x, ∂ϕ(x)) |x ∈ ∂Ω}

where ∂ϕ is the holomorphic differential of ϕ. We say that Ω is non-
characteristic with respect to some holonomic DX-module M iff

char(M) ∩N∗Ω = ∅

We note the following important fact which is used two times in the
proof of the constructibility theorem: Consider a function ϕ as above.
Then for any regular real subspace Z the set of values c of ϕ such that
x ∈ ϕ−1(c) ∩ Z and (x, ∂ϕ(x)) ∈ T ∗ZX is finite.

The technical result which is needed for the proof is as follows.

Lemma B.12. Let a family of C1-domains Ωt with t ∈ [0, 1] be given
such that

Ωt =
⋃
s<t

Ωs and Ωt =
⋂
s>t

Ωs

and suppose that all Ωt are non-characteristic with respect to M. Then
each of the restriction morphisms

Hp(Ω1, Sol
•(M)) −→ Hp(Ωt, Sol•(M))

is an isomorphism.

A proof can be found in [Bjö93]. Note however that it uses microlocal
techniques in order to obtain a vanishing result for certain local coho-
mology groups.
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Proof of the theorem. As the result is local in nature, we can assume that
X is an embedded in some Cn. Let Z ⊂ π(char(M)) be a component
and x0 ∈ Z a point. We consider the restriction

F := ExtpDX
(M,OX)|Z∩Bx0 (ε)

where Bx0(ε) is a small ε-ball around x0 inside X . We have to show that
F is a constant sheaf. Define for any x ∈ Z ∩ Bx0(ε) and any t ∈ (0, 1)
the set Ωt(x) := {y ∈ Bx0(ε) : |(1 − t)x − ty − x0| < εt}. We have
Ω1(x) = Bx0(ε) for any x. Moreover, it can be shown that there is an ε0
such that N∗∂Ωt(x)

does not meet the conormal cone to π(char(M)) for
any t and x ∈ Z∩Bx0(ε0). This implies that ∂Ωt(x) is non-characteristic
with respect to M, which makes it possible to apply lemma B.12 on the
preceding page to get that the restrictions

Hp(Bx0(ε0), Sol
•(M)) −→ Hp(Ωt(x), Sol•(M))

are isomorphisms. By letting t→ 0, we obtain that the stalk Fx is equal
to Hp(Bx0(ε0), Sol•(M)). Therefore, F is constant.

For the second part, i.e., the finiteness of the stalks ExtpDX
(M,OX)x0 ,

we use a similar argument: There is an ε such that ∂Bx0(ε′) is non-
characteristic with respect to M for every ε′ < ε. Now we consider the
family Ωt(x0) := Bx0(tε). Then the desired result follows immediately
from lemma B.12 and proposition B.10 on the facing page.

Now that we have seen that Sol defines in fact a functor from the
category of holonomic D-modules to constructible sheaves one might
ask whether this functor is an equivalence. It turns out that this is the
case when we restrict this functor to a subclass consisting of regular holo-
nomic modules. Recall first the case where X is one-dimensional. Then
the singular locus of M, i.e., the components of π(char(X)) which are of
dimension less then n, is a (possibly empty) discrete set of points. Out-
side of these points M is a connection in the sense described above. Then
the localized module M[t−1] (t being a coordinate around the singular
point) is called a meromorphic connection with a regular singularity if
there is a basis of this module over C{t}[t−1] such that the matrix of the
connection with respect to this basis has a pole of order at most one. It
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is known that regular singular connections are in one-to-one correspon-
dence to local systems on the punctured disc. Consequently, one possible
definition of a regular holonomic module M is that the pull-back (which
is defined in the category of DX -modules) to any curve is regular in the
sense just described. The next definition makes this precise and presents
equivalent definitions of regularity.

Theorem B.13. The following conditions are equivalent.

1. Let γ : C → X holomorphic, where C is smooth and one-dimensio-
nal. Then the complex γ+(M), where γ+ is the pull-back functor in
the category of coherent DX-modules is regular, i.e., its localization
around each singular point is a meromorphic connection.

2. There is a globally defined good filtration on M such that the an-
nihilator of gr(M) in gr(DX) is a radical ideal (Note that for each
holonomic DX-module there exists a globally defined good filtra-
tion).

3. Denote by ÔX,x the completion of the local ring at a point x ∈ X.
Then we have for all points x:

RHomDX,x(Mx, ÔX,x/OX,x) = 0

that is, the formal and the analytic solution complex coincides.

A holonomic module satisfying one of these condition is called regular
holonomic.

With this definition in mind we can state the Riemann-Hilbert cor-
respondence.

Theorem B.14. The functor DR is an equivalence from the derived
category of complexes of regular holonomic DX-modules to the derived
category of complexes of constructible sheaves of C-vector spaces.

Remark: In the third chapter, we study a sheaf complex arising from a
lagrangian singularity. It turns out that the cohomology of this complex
is constructible under some hypothesis. Therefore, by the Riemann-
Hilbert correspondence, there is a (complex of) holonomic D-module(s)
corresponding to it via the functor DR.
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